Adapting Virtual Embodiment Through Reinforcement Learning

In Virtual Reality, having a virtual body opens a wide range of possibilities as the participant's avatar can appear to be quite different from oneself for the sake of the targeted application (e.g., for perspective-taking). In addition, the system can partially manipulate the displayed avatar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 9 vom: 08. Sept., Seite 3193-3205
1. Verfasser: Porssut, Thibault (VerfasserIn)
Weitere Verfasser: Hou, Yawen, Blanke, Olaf, Herbelin, Bruno, Boulic, Ronan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM321164776
003 DE-627
005 20231225175229.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3057797  |2 doi 
028 5 2 |a pubmed24n1070.xml 
035 |a (DE-627)NLM321164776 
035 |a (NLM)33556011 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Porssut, Thibault  |e verfasserin  |4 aut 
245 1 0 |a Adapting Virtual Embodiment Through Reinforcement Learning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.08.2022 
500 |a Date Revised 10.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In Virtual Reality, having a virtual body opens a wide range of possibilities as the participant's avatar can appear to be quite different from oneself for the sake of the targeted application (e.g., for perspective-taking). In addition, the system can partially manipulate the displayed avatar movement through some distortion to make the overall experience more enjoyable and effective (e.g., training, exercising, rehabilitation). Despite its potential, an excessive distortion may become noticeable and break the feeling of being embodied into the avatar. Past researches have shown that individuals have a relatively high tolerance to movement distortions and a great variability of individual sensitivities to distortions. In this article, we propose a method taking advantage of Reinforcement Learning (RL) to efficiently identify the magnitude of the maximum distortion that does not get noticed by an individual (further noted the detection threshold). We show through a controlled experiment with subjects that the RL method finds a more robust detection threshold compared to the adaptive staircase method, i.e., it is more able to prevent subjects from detecting the distortion when its amplitude is equal or below the threshold. Finally, the associated majority voting system makes the RL method able to handle more noise within the forced choices input than adaptive staircase. This last feature is essential for future use with physiological signals as these latter are even more susceptible to noise. It would then allow to calibrate embodiment individually to increase the effectiveness of the proposed interactions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hou, Yawen  |e verfasserin  |4 aut 
700 1 |a Blanke, Olaf  |e verfasserin  |4 aut 
700 1 |a Herbelin, Bruno  |e verfasserin  |4 aut 
700 1 |a Boulic, Ronan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 9 vom: 08. Sept., Seite 3193-3205  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:9  |g day:08  |g month:09  |g pages:3193-3205 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3057797  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 9  |b 08  |c 09  |h 3193-3205