Strain-Engineering Induced Anisotropic Crystallite Orientation and Maximized Carrier Mobility for High-Performance Microfiber-Based Organic Bioelectronic Devices

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 10 vom: 01. März, Seite e2007550
1. Verfasser: Kim, Youngseok (VerfasserIn)
Weitere Verfasser: Noh, Hyebin, Paulsen, Bryan D, Kim, Jiwoong, Jo, Il-Young, Ahn, HyungJu, Rivnay, Jonathan, Yoon, Myung-Han
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review conducting polymers mixed conductors organic electrochemical transistors poly(3,4-ethylenedioxythiophene):polystyrene sulfonate strain engineering Polystyrenes poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Thiophenes mehr... Polymers polystyrene sulfonic acid 70KO0R01RY
LEADER 01000caa a22002652 4500
001 NLM320987493
003 DE-627
005 20240725232329.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202007550  |2 doi 
028 5 2 |a pubmed24n1481.xml 
035 |a (DE-627)NLM320987493 
035 |a (NLM)33538016 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Youngseok  |e verfasserin  |4 aut 
245 1 0 |a Strain-Engineering Induced Anisotropic Crystallite Orientation and Maximized Carrier Mobility for High-Performance Microfiber-Based Organic Bioelectronic Devices 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.07.2024 
500 |a Date Revised 24.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Despite the importance of carrier mobility, recent research efforts have been mainly focused on the improvement of volumetric capacitance in order to maximize the figure-of-merit, μC* (product of carrier mobility and volumetric capacitance), for high-performance organic electrochemical transistors. Herein, high-performance microfiber-based organic electrochemical transistors with unprecedentedly large μC* using highly ordered crystalline poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) microfibers with very high carrier mobilities are reported. The strain engineering via uniaxial tension is employed in combination with solvent-mediated crystallization in the course of drying coagulated fibers, resulting in the permanent preferential alignment of crystalline PEDOT:PSS domains along the fiber direction, which is verified by atomic force microscopy and transmission wide-angle X-ray scattering. The resultant strain-engineered microfibers exhibit very high carrier mobility (12.9 cm2 V-1 s-1 ) without the trade-off in volumetric capacitance (122 F cm-3 ) and hole density (5.8 × 1020  cm-3 ). Such advantageous electrical and electrochemical characteristics offer the benchmark parameter of μC* over ≈1500 F cm-1  V-1  s-1 , which is the highest metric ever reported in the literature and can be beneficial for realizing a new class of substrate-free fibrillar and/or textile bioelectronics in the configuration of electrochemical transistors and/or electrochemical ion pumps 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a conducting polymers 
650 4 |a mixed conductors 
650 4 |a organic electrochemical transistors 
650 4 |a poly(3,4-ethylenedioxythiophene):polystyrene sulfonate 
650 4 |a strain engineering 
650 7 |a Polystyrenes  |2 NLM 
650 7 |a poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)  |2 NLM 
650 7 |a Thiophenes  |2 NLM 
650 7 |a Polymers  |2 NLM 
650 7 |a polystyrene sulfonic acid  |2 NLM 
650 7 |a 70KO0R01RY  |2 NLM 
700 1 |a Noh, Hyebin  |e verfasserin  |4 aut 
700 1 |a Paulsen, Bryan D  |e verfasserin  |4 aut 
700 1 |a Kim, Jiwoong  |e verfasserin  |4 aut 
700 1 |a Jo, Il-Young  |e verfasserin  |4 aut 
700 1 |a Ahn, HyungJu  |e verfasserin  |4 aut 
700 1 |a Rivnay, Jonathan  |e verfasserin  |4 aut 
700 1 |a Yoon, Myung-Han  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 10 vom: 01. März, Seite e2007550  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:10  |g day:01  |g month:03  |g pages:e2007550 
856 4 0 |u http://dx.doi.org/10.1002/adma.202007550  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 10  |b 01  |c 03  |h e2007550