|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM320987493 |
003 |
DE-627 |
005 |
20240725232329.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202007550
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1481.xml
|
035 |
|
|
|a (DE-627)NLM320987493
|
035 |
|
|
|a (NLM)33538016
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kim, Youngseok
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Strain-Engineering Induced Anisotropic Crystallite Orientation and Maximized Carrier Mobility for High-Performance Microfiber-Based Organic Bioelectronic Devices
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.07.2024
|
500 |
|
|
|a Date Revised 24.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Despite the importance of carrier mobility, recent research efforts have been mainly focused on the improvement of volumetric capacitance in order to maximize the figure-of-merit, μC* (product of carrier mobility and volumetric capacitance), for high-performance organic electrochemical transistors. Herein, high-performance microfiber-based organic electrochemical transistors with unprecedentedly large μC* using highly ordered crystalline poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) microfibers with very high carrier mobilities are reported. The strain engineering via uniaxial tension is employed in combination with solvent-mediated crystallization in the course of drying coagulated fibers, resulting in the permanent preferential alignment of crystalline PEDOT:PSS domains along the fiber direction, which is verified by atomic force microscopy and transmission wide-angle X-ray scattering. The resultant strain-engineered microfibers exhibit very high carrier mobility (12.9 cm2 V-1 s-1 ) without the trade-off in volumetric capacitance (122 F cm-3 ) and hole density (5.8 × 1020 cm-3 ). Such advantageous electrical and electrochemical characteristics offer the benchmark parameter of μC* over ≈1500 F cm-1 V-1 s-1 , which is the highest metric ever reported in the literature and can be beneficial for realizing a new class of substrate-free fibrillar and/or textile bioelectronics in the configuration of electrochemical transistors and/or electrochemical ion pumps
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a conducting polymers
|
650 |
|
4 |
|a mixed conductors
|
650 |
|
4 |
|a organic electrochemical transistors
|
650 |
|
4 |
|a poly(3,4-ethylenedioxythiophene):polystyrene sulfonate
|
650 |
|
4 |
|a strain engineering
|
650 |
|
7 |
|a Polystyrenes
|2 NLM
|
650 |
|
7 |
|a poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)
|2 NLM
|
650 |
|
7 |
|a Thiophenes
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
650 |
|
7 |
|a polystyrene sulfonic acid
|2 NLM
|
650 |
|
7 |
|a 70KO0R01RY
|2 NLM
|
700 |
1 |
|
|a Noh, Hyebin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Paulsen, Bryan D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jiwoong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jo, Il-Young
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ahn, HyungJu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rivnay, Jonathan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yoon, Myung-Han
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 10 vom: 01. März, Seite e2007550
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:10
|g day:01
|g month:03
|g pages:e2007550
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202007550
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 10
|b 01
|c 03
|h e2007550
|