Strain-Engineering Induced Anisotropic Crystallite Orientation and Maximized Carrier Mobility for High-Performance Microfiber-Based Organic Bioelectronic Devices

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 10 vom: 01. März, Seite e2007550
1. Verfasser: Kim, Youngseok (VerfasserIn)
Weitere Verfasser: Noh, Hyebin, Paulsen, Bryan D, Kim, Jiwoong, Jo, Il-Young, Ahn, HyungJu, Rivnay, Jonathan, Yoon, Myung-Han
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review conducting polymers mixed conductors organic electrochemical transistors poly(3,4-ethylenedioxythiophene):polystyrene sulfonate strain engineering Polystyrenes poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Thiophenes mehr... Polymers polystyrene sulfonic acid 70KO0R01RY
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Despite the importance of carrier mobility, recent research efforts have been mainly focused on the improvement of volumetric capacitance in order to maximize the figure-of-merit, μC* (product of carrier mobility and volumetric capacitance), for high-performance organic electrochemical transistors. Herein, high-performance microfiber-based organic electrochemical transistors with unprecedentedly large μC* using highly ordered crystalline poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) microfibers with very high carrier mobilities are reported. The strain engineering via uniaxial tension is employed in combination with solvent-mediated crystallization in the course of drying coagulated fibers, resulting in the permanent preferential alignment of crystalline PEDOT:PSS domains along the fiber direction, which is verified by atomic force microscopy and transmission wide-angle X-ray scattering. The resultant strain-engineered microfibers exhibit very high carrier mobility (12.9 cm2 V-1 s-1 ) without the trade-off in volumetric capacitance (122 F cm-3 ) and hole density (5.8 × 1020  cm-3 ). Such advantageous electrical and electrochemical characteristics offer the benchmark parameter of μC* over ≈1500 F cm-1  V-1  s-1 , which is the highest metric ever reported in the literature and can be beneficial for realizing a new class of substrate-free fibrillar and/or textile bioelectronics in the configuration of electrochemical transistors and/or electrochemical ion pumps
Beschreibung:Date Completed 24.07.2024
Date Revised 24.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202007550