|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM320489280 |
003 |
DE-627 |
005 |
20231225173708.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.17162
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1068.xml
|
035 |
|
|
|a (DE-627)NLM320489280
|
035 |
|
|
|a (NLM)33486789
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Helliwell, Katherine E
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Spatiotemporal patterns of intracellular Ca2+ signalling govern hypo-osmotic stress resilience in marine diatoms
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.05.2021
|
500 |
|
|
|a Date Revised 16.07.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2020 The Authors New Phytologist © 2020 New Phytologist Foundation.
|
520 |
|
|
|a Diatoms are globally important phytoplankton that dominate coastal and polar-ice assemblages. These environments exhibit substantial changes in salinity over dynamic spatiotemporal regimes. Rapid sensory systems are vital to mitigate the harmful consequences of osmotic stress. Population-based analyses have suggested that Ca2+ signalling is involved in diatom osmotic sensing. However, mechanistic insight of the role of osmotic Ca2+ signalling is limited. Here, we show that Phaeodactylum Ca2+ elevations are essential for surviving hypo-osmotic shock. Moreover, employing novel single-cell imaging techniques we have characterised real-time Ca2+ signalling responses in single diatom cells to environmental osmotic perturbations. We observe that intracellular spatiotemporal patterns of osmotic-induced Ca2+ elevations encode vital information regarding the nature of the osmotic stimulus. Localised Ca2+ signals evoked by mild or gradual hypo-osmotic shocks are propagated globally from the apical cell tips, enabling fine-tuned cell volume regulation across the whole cell. Finally, we demonstrate that diatoms adopt Ca2+ -independent and dependent mechanisms for osmoregulation. We find that efflux of organic osmolytes occurs in a Ca2+ -independent manner, but this response is insufficient to mitigate cell damage during hypo-osmotic shock. By comparison, Ca2+ -dependent signalling is necessary to prevent cell bursting via precise coordination of K+ transport, and therefore is likely to underpin survival in dynamic osmotic environments
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Phaeodactylum
|
650 |
|
4 |
|a Ca2+ signalling
|
650 |
|
4 |
|a R-GECO1
|
650 |
|
4 |
|a algae
|
650 |
|
4 |
|a diatoms
|
650 |
|
4 |
|a environmental sensing
|
650 |
|
4 |
|a osmotic stress
|
650 |
|
4 |
|a signalling
|
650 |
|
7 |
|a Calcium
|2 NLM
|
650 |
|
7 |
|a SY7Q814VUP
|2 NLM
|
700 |
1 |
|
|a Kleiner, Friedrich H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hardstaff, Hayley
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chrachri, Abdul
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gaikwad, Trupti
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Salmon, Deborah
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Smirnoff, Nicholas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wheeler, Glen L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Brownlee, Colin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 230(2021), 1 vom: 30. Apr., Seite 155-170
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:230
|g year:2021
|g number:1
|g day:30
|g month:04
|g pages:155-170
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.17162
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 230
|j 2021
|e 1
|b 30
|c 04
|h 155-170
|