Biomimetic Design of Mitochondria-Targeted Hybrid Nanozymes as Superoxide Scavengers

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 9 vom: 17. März, Seite e2006570
1. Verfasser: Zhang, Yue (VerfasserIn)
Weitere Verfasser: Khalique, Anila, Du, Xinchen, Gao, Zhanxia, Wu, Jin, Zhang, Xiangyun, Zhang, Ran, Sun, Zhiyuan, Liu, Qiqi, Xu, Zhelong, Midgley, Adam C, Wang, Lianyong, Yan, Xiyun, Zhuang, Jie, Kong, Deling, Huang, Xinglu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article de novo design mitochondria nanozymes protein scaffolds superoxide scavengers Amino Acids Free Radical Scavengers Hydrogels Manganese Compounds mehr... Oxides Superoxides 11062-77-4 Ferritins 9007-73-2 Catalase EC 1.11.1.6 Superoxide Dismutase EC 1.15.1.1 manganese dioxide TF219GU161
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Development of enzyme mimics for the scavenging of excessive mitochondrial superoxide (O2 •- ) can serve as an effective strategy in the treatment of many diseases. Here, protein reconstruction technology and nanotechnology is taken advantage of to biomimetically create an artificial hybrid nanozyme. These nanozymes consist of ferritin-heavy-chain-based protein as the enzyme scaffold and a metal nanoparticle core as the enzyme active center. This artificial cascade nanozyme possesses superoxide dismutase- and catalase-like activities and also targets mitochondria by overcoming multiple biological barriers. Using cardiac ischemia-reperfusion animal models, the protective advantages of the hybrid nanozymes are demonstrated in vivo during mitochondrial oxidative injury and in the recovery of heart functionality following infarction via systemic delivery and localized release from adhesive hydrogels (i.e., cardiac patch), respectively. This study illustrates a de novo design strategy in the development of enzyme mimics and provides a promising therapeutic option for alleviating oxidative damage in regenerative medicine
Beschreibung:Date Completed 19.10.2021
Date Revised 19.10.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202006570