Dual roles of the serine/arginine-rich splicing factor SR45a in promoting and interacting with nuclear cap-binding complex to modulate the salt-stress response in Arabidopsis
© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
Veröffentlicht in: | The New phytologist. - 1979. - 230(2021), 2 vom: 15. Apr., Seite 641-655 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't CBP20 SR45a alternative splicing cap-binding complex post-transcriptional regulation salt stress serine/arginine-rich protein Arabidopsis Proteins mehr... |
Zusammenfassung: | © 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. Alternative splicing (AS) is emerging as a critical co-transcriptional regulation for plants in response to environmental stresses. Although multiple splicing factors have been linked to the salt-sensitive signaling network, the molecular mechanism remains unclear. We discovered that a conserved serine/arginine-rich (SR)-like protein, SR45a, as a component of the spliceosome, was involved in post-transcriptional regulation of salinity tolerance in Arabidopsis thaliana. Furthermore, SR45a was required for the AS and messenger RNA (mRNA) maturation of several salt-tolerance genes. Two alternatively spliced variants of SR45a were induced by salt stress, full-length SR45a-1a and the truncated isoform SR45a-1b, respectively. Lines with overexpression of SR45a-1a and SR45a-1b exhibited hypersensitive to salt stress. Our data indicated that SR45a directly interacted with the cap-binding complex (CBC) subunit cap-binding protein 20 (CBP20) which mediated salt-stress responses. Instead of binding to other spliceosome components, SR45a-1b promoted the association of SR45a-1a with CBP20, therefore mediating salt-stress signal transduction pathways. Additionally, the mutations in SR45a and CBP20 led to different salt-stress phenotypes. Together, these results provide the evidence that SR45a-CBP20 acts as a regulatory complex to regulate the plant response to salt stress, through a regulatory mechanism to fine-tune the splicing factors, especially in stressful conditions |
---|---|
Beschreibung: | Date Completed 14.05.2021 Date Revised 31.05.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.17175 |