Not All Samples are Trustworthy : Towards Deep Robust SVP Prediction

In this paper, we study the problem of estimating subjective visual properties (SVP) for images, which is an emerging task in Computer Vision. Generally speaking, collecting SVP datasets involves a crowdsourcing process where annotations are obtained from a wide range of online users. Since the proc...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 6 vom: 29. Juni, Seite 3154-3169
Auteur principal: Xu, Qianqian (Auteur)
Autres auteurs: Yang, Zhiyong, Jiang, Yangbangyan, Cao, Xiaochun, Yao, Yuan, Huang, Qingming
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM319374459
003 DE-627
005 20250228153301.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3047817  |2 doi 
028 5 2 |a pubmed25n1064.xml 
035 |a (DE-627)NLM319374459 
035 |a (NLM)33373295 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Qianqian  |e verfasserin  |4 aut 
245 1 0 |a Not All Samples are Trustworthy  |b Towards Deep Robust SVP Prediction 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.05.2022 
500 |a Date Revised 09.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we study the problem of estimating subjective visual properties (SVP) for images, which is an emerging task in Computer Vision. Generally speaking, collecting SVP datasets involves a crowdsourcing process where annotations are obtained from a wide range of online users. Since the process is done without quality control, SVP datasets are known to suffer from noise. This leads to the issue that not all samples are trustworthy. Facing this problem, we need to develop robust models for learning SVP from noisy crowdsourced annotations. In this paper, we construct two general robust learning frameworks for this application. Specifically, in the first framework, we propose a probabilistic framework to explicitly model the sparse unreliable patterns that exist in the dataset. It is noteworthy that we then provide an alternative framework that could reformulate the sparse unreliable patterns as a "contraction" operation over the original loss function. The latter framework leverages not only efficient end-to-end training but also rigorous theoretical analyses. To apply these frameworks, we further provide two models as implementations of the frameworks, where the sparse noise parameters could be interpreted with the HodgeRank theory. Finally, extensive theoretical and empirical studies show the effectiveness of our proposed framework 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yang, Zhiyong  |e verfasserin  |4 aut 
700 1 |a Jiang, Yangbangyan  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
700 1 |a Yao, Yuan  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 6 vom: 29. Juni, Seite 3154-3169  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:6  |g day:29  |g month:06  |g pages:3154-3169 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3047817  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 6  |b 29  |c 06  |h 3154-3169