PVNet : Pixel-Wise Voting Network for 6DoF Object Pose Estimation

This paper addresses the problem of instance-level 6DoF object pose estimation from a single RGB image. Many recent works have shown that a two-stage approach, which first detects keypoints and then solves a Perspective-n-Point (PnP) problem for pose estimation, achieves remarkable performance. Howe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 6 vom: 15. Juni, Seite 3212-3223
1. Verfasser: Peng, Sida (VerfasserIn)
Weitere Verfasser: Zhou, Xiaowei, Liu, Yuan, Lin, Haotong, Huang, Qixing, Bao, Hujun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM319253139
003 DE-627
005 20231225171048.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3047388  |2 doi 
028 5 2 |a pubmed24n1064.xml 
035 |a (DE-627)NLM319253139 
035 |a (NLM)33360984 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peng, Sida  |e verfasserin  |4 aut 
245 1 0 |a PVNet  |b Pixel-Wise Voting Network for 6DoF Object Pose Estimation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.05.2022 
500 |a Date Revised 09.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper addresses the problem of instance-level 6DoF object pose estimation from a single RGB image. Many recent works have shown that a two-stage approach, which first detects keypoints and then solves a Perspective-n-Point (PnP) problem for pose estimation, achieves remarkable performance. However, most of these methods only localize a set of sparse keypoints by regressing their image coordinates or heatmaps, which are sensitive to occlusion and truncation. Instead, we introduce a Pixel-wise Voting Network (PVNet) to regress pixel-wise vectors pointing to the keypoints and use these vectors to vote for keypoint locations. This creates a flexible representation for localizing occluded or truncated keypoints. Another important feature of this representation is that it provides uncertainties of keypoint locations that can be further leveraged by the PnP solver. Experiments show that the proposed approach outperforms the state of the art on the LINEMOD, Occluded LINEMOD, YCB-Video, and Tless datasets, while being efficient for real-time pose estimation. We further create a Truncated LINEMOD dataset to validate the robustness of our approach against truncation. The code is available at https://github.com/zju3dv/pvnet 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Zhou, Xiaowei  |e verfasserin  |4 aut 
700 1 |a Liu, Yuan  |e verfasserin  |4 aut 
700 1 |a Lin, Haotong  |e verfasserin  |4 aut 
700 1 |a Huang, Qixing  |e verfasserin  |4 aut 
700 1 |a Bao, Hujun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 6 vom: 15. Juni, Seite 3212-3223  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:6  |g day:15  |g month:06  |g pages:3212-3223 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3047388  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 6  |b 15  |c 06  |h 3212-3223