Learning Saliency From Single Noisy Labelling : A Robust Model Fitting Perspective

The advances made in predicting visual saliency using deep neural networks come at the expense of collecting large-scale annotated data. However, pixel-wise annotation is labor-intensive and overwhelming. In this paper, we propose to learn saliency prediction from a single noisy labelling, which is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 8 vom: 22. Aug., Seite 2866-2873
1. Verfasser: Zhang, Jing (VerfasserIn)
Weitere Verfasser: Dai, Yuchao, Zhang, Tong, Harandi, Mehrtash, Barnes, Nick, Hartley, Richard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM319162788
003 DE-627
005 20231225170850.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3046486  |2 doi 
028 5 2 |a pubmed24n1063.xml 
035 |a (DE-627)NLM319162788 
035 |a (NLM)33351750 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Jing  |e verfasserin  |4 aut 
245 1 0 |a Learning Saliency From Single Noisy Labelling  |b A Robust Model Fitting Perspective 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2021 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The advances made in predicting visual saliency using deep neural networks come at the expense of collecting large-scale annotated data. However, pixel-wise annotation is labor-intensive and overwhelming. In this paper, we propose to learn saliency prediction from a single noisy labelling, which is easy to obtain (e.g., from imperfect human annotation or from unsupervised saliency prediction methods). With this goal, we address a natural question: Can we learn saliency prediction while identifying clean labels in a unified framework? To answer this question, we call on the theory of robust model fitting and formulate deep saliency prediction from a single noisy labelling as robust network learning and exploit model consistency across iterations to identify inliers and outliers (i.e., noisy labels). Extensive experiments on different benchmark datasets demonstrate the superiority of our proposed framework, which can learn comparable saliency prediction with state-of-the-art fully supervised saliency methods. Furthermore, we show that simply by treating ground truth annotations as noisy labelling, our framework achieves tangible improvements over state-of-the-art methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Dai, Yuchao  |e verfasserin  |4 aut 
700 1 |a Zhang, Tong  |e verfasserin  |4 aut 
700 1 |a Harandi, Mehrtash  |e verfasserin  |4 aut 
700 1 |a Barnes, Nick  |e verfasserin  |4 aut 
700 1 |a Hartley, Richard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 8 vom: 22. Aug., Seite 2866-2873  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:8  |g day:22  |g month:08  |g pages:2866-2873 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3046486  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 8  |b 22  |c 08  |h 2866-2873