Learning Saliency From Single Noisy Labelling : A Robust Model Fitting Perspective
The advances made in predicting visual saliency using deep neural networks come at the expense of collecting large-scale annotated data. However, pixel-wise annotation is labor-intensive and overwhelming. In this paper, we propose to learn saliency prediction from a single noisy labelling, which is...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 8 vom: 22. Aug., Seite 2866-2873
|
Auteur principal: |
Zhang, Jing
(Auteur) |
Autres auteurs: |
Dai, Yuchao,
Zhang, Tong,
Harandi, Mehrtash,
Barnes, Nick,
Hartley, Richard |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2021
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
Sujets: | Journal Article
Research Support, Non-U.S. Gov't |