Learning Saliency From Single Noisy Labelling : A Robust Model Fitting Perspective

The advances made in predicting visual saliency using deep neural networks come at the expense of collecting large-scale annotated data. However, pixel-wise annotation is labor-intensive and overwhelming. In this paper, we propose to learn saliency prediction from a single noisy labelling, which is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 8 vom: 22. Aug., Seite 2866-2873
1. Verfasser: Zhang, Jing (VerfasserIn)
Weitere Verfasser: Dai, Yuchao, Zhang, Tong, Harandi, Mehrtash, Barnes, Nick, Hartley, Richard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't