Learning Saliency From Single Noisy Labelling : A Robust Model Fitting Perspective
The advances made in predicting visual saliency using deep neural networks come at the expense of collecting large-scale annotated data. However, pixel-wise annotation is labor-intensive and overwhelming. In this paper, we propose to learn saliency prediction from a single noisy labelling, which is...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 8 vom: 22. Aug., Seite 2866-2873
|
1. Verfasser: |
Zhang, Jing
(VerfasserIn) |
Weitere Verfasser: |
Dai, Yuchao,
Zhang, Tong,
Harandi, Mehrtash,
Barnes, Nick,
Hartley, Richard |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article
Research Support, Non-U.S. Gov't |