Learning Saliency From Single Noisy Labelling : A Robust Model Fitting Perspective

The advances made in predicting visual saliency using deep neural networks come at the expense of collecting large-scale annotated data. However, pixel-wise annotation is labor-intensive and overwhelming. In this paper, we propose to learn saliency prediction from a single noisy labelling, which is...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 8 vom: 22. Aug., Seite 2866-2873
Auteur principal: Zhang, Jing (Auteur)
Autres auteurs: Dai, Yuchao, Zhang, Tong, Harandi, Mehrtash, Barnes, Nick, Hartley, Richard
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't