EnAET : A Self-Trained Framework for Semi-Supervised and Supervised Learning With Ensemble Transformations
Deep neural networks have been successfully applied to many real-world applications. However, such successes rely heavily on large amounts of labeled data that is expensive to obtain. Recently, many methods for semi-supervised learning have been proposed and achieved excellent performance. In this s...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 1639-1647 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |