EnAET : A Self-Trained Framework for Semi-Supervised and Supervised Learning With Ensemble Transformations

Deep neural networks have been successfully applied to many real-world applications. However, such successes rely heavily on large amounts of labeled data that is expensive to obtain. Recently, many methods for semi-supervised learning have been proposed and achieved excellent performance. In this s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 1639-1647
1. Verfasser: Wang, Xiao (VerfasserIn)
Weitere Verfasser: Kihara, Daisuke, Luo, Jiebo, Qi, Guo-Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article