EnAET : A Self-Trained Framework for Semi-Supervised and Supervised Learning With Ensemble Transformations

Deep neural networks have been successfully applied to many real-world applications. However, such successes rely heavily on large amounts of labeled data that is expensive to obtain. Recently, many methods for semi-supervised learning have been proposed and achieved excellent performance. In this s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 1639-1647
1. Verfasser: Wang, Xiao (VerfasserIn)
Weitere Verfasser: Kihara, Daisuke, Luo, Jiebo, Qi, Guo-Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM31912052X
003 DE-627
005 20231225170758.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3044220  |2 doi 
028 5 2 |a pubmed24n1063.xml 
035 |a (DE-627)NLM31912052X 
035 |a (NLM)33347409 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xiao  |e verfasserin  |4 aut 
245 1 0 |a EnAET  |b A Self-Trained Framework for Semi-Supervised and Supervised Learning With Ensemble Transformations 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep neural networks have been successfully applied to many real-world applications. However, such successes rely heavily on large amounts of labeled data that is expensive to obtain. Recently, many methods for semi-supervised learning have been proposed and achieved excellent performance. In this study, we propose a new EnAET framework to further improve existing semi-supervised methods with self-supervised information. To our best knowledge, all current semi-supervised methods improve performance with prediction consistency and confidence ideas. We are the first to explore the role of self-supervised representations in semi-supervised learning under a rich family of transformations. Consequently, our framework can integrate the self-supervised information as a regularization term to further improve all current semi-supervised methods. In the experiments, we use MixMatch, which is the current state-of-the-art method on semi-supervised learning, as a baseline to test the proposed EnAET framework. Across different datasets, we adopt the same hyper-parameters, which greatly improves the generalization ability of the EnAET framework. Experiment results on different datasets demonstrate that the proposed EnAET framework greatly improves the performance of current semi-supervised algorithms. Moreover, this framework can also improve supervised learning by a large margin, including the extremely challenging scenarios with only 10 images per class. The code and experiment records are available in https://github.com/maple-research-lab/EnAET 
650 4 |a Journal Article 
700 1 |a Kihara, Daisuke  |e verfasserin  |4 aut 
700 1 |a Luo, Jiebo  |e verfasserin  |4 aut 
700 1 |a Qi, Guo-Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 1639-1647  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:1639-1647 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3044220  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 1639-1647