A Local Graph-Based Structure for Processing Gigantic Aggregated 3D Point Clouds

We present an original workflow for structuring a point cloud generated from several scans. Our representation is based on a set of local graphs. Each graph is constructed from the depth map provided by each scan. The graphs are then connected together via the overlapping areas, and careful consider...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 8 vom: 01. Aug., Seite 2822-2833
1. Verfasser: Bletterer, Arnaud (VerfasserIn)
Weitere Verfasser: Payan, Frederic, Antonini, Marc
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM318415887
003 DE-627
005 20231225165316.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3042588  |2 doi 
028 5 2 |a pubmed24n1061.xml 
035 |a (DE-627)NLM318415887 
035 |a (NLM)33275583 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bletterer, Arnaud  |e verfasserin  |4 aut 
245 1 2 |a A Local Graph-Based Structure for Processing Gigantic Aggregated 3D Point Clouds 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present an original workflow for structuring a point cloud generated from several scans. Our representation is based on a set of local graphs. Each graph is constructed from the depth map provided by each scan. The graphs are then connected together via the overlapping areas, and careful consideration of the redundant points in these regions leads to a piecewise and globally consistent structure for the underlying surface sampled by the point cloud. The proposed workflow allows structuring aggregated point clouds, scan after scan, whatever the number of acquisitions and the number of points per acquisition, even on computers with very limited memory capacities. To show that our structure can be highly relevant for the community, where the gigantic amount of data represents a real scientific challenge per se, we present an algorithm based on this structure capable of resampling billions of points on standard computers. This application is particularly attractive for simplifying and visualizing gigantic point clouds representing very large-scale scenes (buildings, urban scenes, historical sites...), which often require a prohibitive number of points to describe them accurately 
650 4 |a Journal Article 
700 1 |a Payan, Frederic  |e verfasserin  |4 aut 
700 1 |a Antonini, Marc  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 8 vom: 01. Aug., Seite 2822-2833  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:8  |g day:01  |g month:08  |g pages:2822-2833 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3042588  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 8  |b 01  |c 08  |h 2822-2833