Stable Potassium Metal Anodes with an All-Aluminum Current Collector through Improved Electrolyte Wetting
© 2020 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 49 vom: 30. Dez., Seite e2002908 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article lithium metal batteries lithium-sulfur batteries potassium-ion batteries potassium-sulfur batteries sodium metal batteries |
Zusammenfassung: | © 2020 Wiley-VCH GmbH. This is the first report of successful potassium metal battery anode cycling with an aluminum-based rather than copper-based current collector. Dendrite-free plating/stripping is achieved through improved electrolyte wetting, employing an aluminum-powder-coated aluminum foil "AlAl," without any modification of the support surface chemistry or electrolyte additives. The reservoir-free Al@Al half-cell is stable at 1000 cycles (1950 h) at 0.5 mA cm-2 , with 98.9% cycling Coulombic efficiency and 0.085 V overpotential. The pre-potassiated cell is stable through a wide current range, including 130 cycles (2600 min) at 3.0 mA cm-2 , with 0.178 V overpotential. Al@Al is fully wetted by a 4 m potassium bis(fluorosulfonyl)imide-dimethoxyethane electrolyte (θCA = 0°), producing a uniform solid electrolyte interphase (SEI) during the initial galvanostatic formation cycles. On planar aluminum foil with a nearly identical surface oxide, the electrolyte wets poorly (θCA = 52°). This correlates with coarse irregular SEI clumps at formation, 3D potassium islands with further SEI coarsening during plating/stripping, possibly dead potassium metal on stripped surfaces, and rapid failure. The electrochemical stability of Al@Al versus planar Al is not related to differences in potassiophilicity (nearly identical) as obtained from thermal wetting experiments. Planar Cu foils are also poorly electrolyte-wetted and become dendritic. The key fundamental takeaway is that the incomplete electrolyte wetting of collectors results in early onset of SEI instability and dendrites |
---|---|
Beschreibung: | Date Revised 22.02.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202002908 |