Dislocation-Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 48 vom: 06. Dez., Seite e2006034
1. Verfasser: Liu, Siliang (VerfasserIn)
Weitere Verfasser: Hu, Zheng, Wu, Yizeng, Zhang, Jinfeng, Zhang, Yang, Cui, Baihua, Liu, Chang, Hu, Shi, Zhao, Naiqin, Han, Xiaopeng, Cao, Anyuan, Chen, Yanan, Deng, Yida, Hu, Wenbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article IrNi nanoparticles dislocations hydrogen evolution reaction strain thermal shock
LEADER 01000naa a22002652 4500
001 NLM316932671
003 DE-627
005 20231225162144.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202006034  |2 doi 
028 5 2 |a pubmed24n1056.xml 
035 |a (DE-627)NLM316932671 
035 |a (NLM)33124756 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Siliang  |e verfasserin  |4 aut 
245 1 0 |a Dislocation-Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley-VCH GmbH. 
520 |a Designing high-performance and low-cost electrocatalysts is crucial for the electrochemical production of hydrogen. Dislocation-strained IrNi nanoparticles loaded on a carbon nanotube sponge (DSIrNiCNTS) driven by unsteady thermal shock in an extreme environment are reported here as a highly efficient hydrogen evolution reaction (HER) catalyst. Experimental results demonstrate that numerous dislocations are kinetically trapped in self-assembled IrNi nanoparticles due to the ultrafast quenching and different atomic radii, which can induce strain effects into the IrNi nanoparticles. Such strain-induced high-energy surface structures arising from bulk defects (dislocations), are more likely to be resistant to surface restructuring during catalysis. The catalyst exhibits outstanding HER activity with only 17 mV overpotential to achieve 10 mA cm-2 in an alkaline electrolyte with fabulous stability, exceeding state-of-the-art Pt/C catalysts. These density functional theory results demonstrate that the electronic structure of as-synthesized IrNi nanostructure can be optimized by the strain effects induced by the dislocations, and the free energy of HER can be tuned toward the optimal region 
650 4 |a Journal Article 
650 4 |a IrNi nanoparticles 
650 4 |a dislocations 
650 4 |a hydrogen evolution reaction 
650 4 |a strain 
650 4 |a thermal shock 
700 1 |a Hu, Zheng  |e verfasserin  |4 aut 
700 1 |a Wu, Yizeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Jinfeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Yang  |e verfasserin  |4 aut 
700 1 |a Cui, Baihua  |e verfasserin  |4 aut 
700 1 |a Liu, Chang  |e verfasserin  |4 aut 
700 1 |a Hu, Shi  |e verfasserin  |4 aut 
700 1 |a Zhao, Naiqin  |e verfasserin  |4 aut 
700 1 |a Han, Xiaopeng  |e verfasserin  |4 aut 
700 1 |a Cao, Anyuan  |e verfasserin  |4 aut 
700 1 |a Chen, Yanan  |e verfasserin  |4 aut 
700 1 |a Deng, Yida  |e verfasserin  |4 aut 
700 1 |a Hu, Wenbin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 48 vom: 06. Dez., Seite e2006034  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:48  |g day:06  |g month:12  |g pages:e2006034 
856 4 0 |u http://dx.doi.org/10.1002/adma.202006034  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 48  |b 06  |c 12  |h e2006034