Transferred Photothermal to Photodynamic Therapy Based on the Marriage of Ultrathin Titanium Carbide and Up-Conversion Nanoparticles

In this research, upconversion nanoparticles (UCNPs) are used as a light conversion carrier, and their deep light source penetrability is closely combined with ultrathin two-dimensional (2D) Ti3C2Tx to explore the application efficiency of the complex in phototherapy. Due to the advantages of 2D Ti3...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 43 vom: 03. Nov., Seite 13060-13069
1. Verfasser: Xu, Danyang (VerfasserIn)
Weitere Verfasser: Yang, Fan, Qu, Danyao, Wang, Zhenni, Gu, Long, Wu, Weiwei, Lv, Ruichan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't titanium carbide 12070-08-5 Titanium D1JT611TNE
Beschreibung
Zusammenfassung:In this research, upconversion nanoparticles (UCNPs) are used as a light conversion carrier, and their deep light source penetrability is closely combined with ultrathin two-dimensional (2D) Ti3C2Tx to explore the application efficiency of the complex in phototherapy. Due to the advantages of 2D Ti3C2Tx with its high absorbance to ultraviolet/visible light, rich atomic defects to load the drugs, and adjustable thinner structure, this 2D material is beneficially applied as the energy donor. UCNPs@Ti3C2Tx with a photothermal conversion efficiency of 20.7% is proven with the ability to generate reactive oxygen species under a 980 nm laser at the cellular level. Importantly, the main photothermal therapy method can be changed to a photodynamic therapy method due to the degradation of Ti3C2Tx to TiO2 under the oxygen-bearing environment. The in vivo experiment was continued to verify that UCNPs@Ti3C2Tx can kill tumor cells and inhibit tumor growth within a certain period. In addition, in vivo treatment with a combination of immunotherapy and phototherapy of UCNPsTi3C2Tx is carried out to achieve stronger tumor inhibition over the prolonged time points
Beschreibung:Date Completed 21.06.2021
Date Revised 21.06.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c02521