V2V : A Deep Learning Approach to Variable-to-Variable Selection and Translation for Multivariate Time-Varying Data

We present V2V, a novel deep learning framework, as a general-purpose solution to the variable-to-variable (V2V) selection and translation problem for multivariate time-varying data (MTVD) analysis and visualization. V2V leverages a representation learning algorithm to identify transferable variable...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 27(2021), 2 vom: 28. Feb., Seite 1290-1300
1. Verfasser: Han, Jun (VerfasserIn)
Weitere Verfasser: Zheng, Hao, Xing, Yunhao, Chen, Danny Z, Wang, Chaoli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM316441694
003 DE-627
005 20250228054313.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3030346  |2 doi 
028 5 2 |a pubmed25n1054.xml 
035 |a (DE-627)NLM316441694 
035 |a (NLM)33074812 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Jun  |e verfasserin  |4 aut 
245 1 0 |a V2V  |b A Deep Learning Approach to Variable-to-Variable Selection and Translation for Multivariate Time-Varying Data 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present V2V, a novel deep learning framework, as a general-purpose solution to the variable-to-variable (V2V) selection and translation problem for multivariate time-varying data (MTVD) analysis and visualization. V2V leverages a representation learning algorithm to identify transferable variables and utilizes Kullback-Leibler divergence to determine the source and target variables. It then uses a generative adversarial network (GAN) to learn the mapping from the source variable to the target variable via the adversarial, volumetric, and feature losses. V2V takes the pairs of time steps of the source and target variable as input for training, Once trained, it can infer unseen time steps of the target variable given the corresponding time steps of the source variable. Several multivariate time-varying data sets of different characteristics are used to demonstrate the effectiveness of V2V, both quantitatively and qualitatively. We compare V2V against histogram matching and two other deep learning solutions (Pix2Pix and CycleGAN) 
650 4 |a Journal Article 
700 1 |a Zheng, Hao  |e verfasserin  |4 aut 
700 1 |a Xing, Yunhao  |e verfasserin  |4 aut 
700 1 |a Chen, Danny Z  |e verfasserin  |4 aut 
700 1 |a Wang, Chaoli  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 27(2021), 2 vom: 28. Feb., Seite 1290-1300  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:27  |g year:2021  |g number:2  |g day:28  |g month:02  |g pages:1290-1300 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3030346  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 2  |b 28  |c 02  |h 1290-1300