V2V : A Deep Learning Approach to Variable-to-Variable Selection and Translation for Multivariate Time-Varying Data

We present V2V, a novel deep learning framework, as a general-purpose solution to the variable-to-variable (V2V) selection and translation problem for multivariate time-varying data (MTVD) analysis and visualization. V2V leverages a representation learning algorithm to identify transferable variable...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 27(2021), 2 vom: 28. Feb., Seite 1290-1300
1. Verfasser: Han, Jun (VerfasserIn)
Weitere Verfasser: Zheng, Hao, Xing, Yunhao, Chen, Danny Z, Wang, Chaoli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article