Continuous Synthesis of Hollow High-Entropy Nanoparticles for Energy and Catalysis Applications

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 46 vom: 13. Nov., Seite e2002853
1. Verfasser: Wang, Xizheng (VerfasserIn)
Weitere Verfasser: Dong, Qi, Qiao, Haiyu, Huang, Zhennan, Saray, Mahmoud Tamadoni, Zhong, Geng, Lin, Zhiwei, Cui, Mingjin, Brozena, Alexandra, Hong, Min, Xia, Qinqin, Gao, Jinlong, Chen, Gang, Shahbazian-Yassar, Reza, Wang, Dunwei, Hu, Liangbing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article catalysis high-entropy alloys hollow structures nanomanufacturing
LEADER 01000naa a22002652 4500
001 NLM315912170
003 DE-627
005 20231225155935.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202002853  |2 doi 
028 5 2 |a pubmed24n1053.xml 
035 |a (DE-627)NLM315912170 
035 |a (NLM)33020998 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xizheng  |e verfasserin  |4 aut 
245 1 0 |a Continuous Synthesis of Hollow High-Entropy Nanoparticles for Energy and Catalysis Applications 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley-VCH GmbH. 
520 |a Mixing multimetallic elements in hollow-structured nanoparticles is a promising strategy for the synthesis of highly efficient and cost-effective catalysts. However, the synthesis of multimetallic hollow nanoparticles is limited to two or three elements due to the difficulties in morphology control under the harsh alloying conditions. Herein, the rapid and continuous synthesis of hollow high-entropy-alloy (HEA) nanoparticles using a continuous "droplet-to-particle" method is reported. The formation of these hollow HEA nanoparticles is enabled through the decomposition of a gas-blowing agent in which a large amount of gas is produced in situ to "puff" the droplet during heating, followed by decomposition of the metal salt precursors and nucleation/growth of multimetallic particles. The high active sites per mass ratio of such hollow HEA nanoparticles makes them promising candidates for energy and electrocatalysis applications. As a proof-of-concept, it is demonstrated that these materials can be applied as the cathode catalyst for Li-O2 battery operations with a record-high current density per catalyst mass loading of 2000 mA gcat. -1 , as well as good stability and durable catalytic activity. This work offers a viable strategy for the continuous manufacturing of hollow HEA nanomaterials that can find broad applications in energy and catalysis 
650 4 |a Journal Article 
650 4 |a catalysis 
650 4 |a high-entropy alloys 
650 4 |a hollow structures 
650 4 |a nanomanufacturing 
700 1 |a Dong, Qi  |e verfasserin  |4 aut 
700 1 |a Qiao, Haiyu  |e verfasserin  |4 aut 
700 1 |a Huang, Zhennan  |e verfasserin  |4 aut 
700 1 |a Saray, Mahmoud Tamadoni  |e verfasserin  |4 aut 
700 1 |a Zhong, Geng  |e verfasserin  |4 aut 
700 1 |a Lin, Zhiwei  |e verfasserin  |4 aut 
700 1 |a Cui, Mingjin  |e verfasserin  |4 aut 
700 1 |a Brozena, Alexandra  |e verfasserin  |4 aut 
700 1 |a Hong, Min  |e verfasserin  |4 aut 
700 1 |a Xia, Qinqin  |e verfasserin  |4 aut 
700 1 |a Gao, Jinlong  |e verfasserin  |4 aut 
700 1 |a Chen, Gang  |e verfasserin  |4 aut 
700 1 |a Shahbazian-Yassar, Reza  |e verfasserin  |4 aut 
700 1 |a Wang, Dunwei  |e verfasserin  |4 aut 
700 1 |a Hu, Liangbing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 46 vom: 13. Nov., Seite e2002853  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:46  |g day:13  |g month:11  |g pages:e2002853 
856 4 0 |u http://dx.doi.org/10.1002/adma.202002853  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 46  |b 13  |c 11  |h e2002853