|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM315722282 |
003 |
DE-627 |
005 |
20231225155530.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2020.3028218
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1052.xml
|
035 |
|
|
|a (DE-627)NLM315722282
|
035 |
|
|
|a (NLM)33001804
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Du, Zheng-Jun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 28.02.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Accurate camera pose estimation is essential and challenging for real world dynamic 3D reconstruction and augmented reality applications. In this article, we present a novel RGB-D SLAM approach for accurate camera pose tracking in dynamic environments. Previous methods detect dynamic components only across a short time-span of consecutive frames. Instead, we provide a more accurate dynamic 3D landmark detection method, followed by the use of long-term consistency via conditional random fields, which leverages long-term observations from multiple frames. Specifically, we first introduce an efficient initial camera pose estimation method based on distinguishing dynamic from static points using graph-cut RANSAC. These static/dynamic labels are used as priors for the unary potential in the conditional random fields, which further improves the accuracy of dynamic 3D landmark detection. Evaluation using the TUM and Bonn RGB-D dynamic datasets shows that our approach significantly outperforms state-of-the-art methods, providing much more accurate camera trajectory estimation in a variety of highly dynamic environments. We also show that dynamic 3D reconstruction can benefit from the camera poses estimated by our RGB-D SLAM approach
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Huang, Shi-Sheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mu, Tai-Jiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Qunhe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Martin, Ralph R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Kun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 28(2022), 4 vom: 01. Apr., Seite 1745-1757
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnns
|
773 |
1 |
8 |
|g volume:28
|g year:2022
|g number:4
|g day:01
|g month:04
|g pages:1745-1757
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2020.3028218
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 28
|j 2022
|e 4
|b 01
|c 04
|h 1745-1757
|