Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency

Accurate camera pose estimation is essential and challenging for real world dynamic 3D reconstruction and augmented reality applications. In this article, we present a novel RGB-D SLAM approach for accurate camera pose tracking in dynamic environments. Previous methods detect dynamic components only...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 4 vom: 01. Apr., Seite 1745-1757
1. Verfasser: Du, Zheng-Jun (VerfasserIn)
Weitere Verfasser: Huang, Shi-Sheng, Mu, Tai-Jiang, Zhao, Qunhe, Martin, Ralph R, Xu, Kun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM315722282
003 DE-627
005 20231225155530.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3028218  |2 doi 
028 5 2 |a pubmed24n1052.xml 
035 |a (DE-627)NLM315722282 
035 |a (NLM)33001804 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Du, Zheng-Jun  |e verfasserin  |4 aut 
245 1 0 |a Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Accurate camera pose estimation is essential and challenging for real world dynamic 3D reconstruction and augmented reality applications. In this article, we present a novel RGB-D SLAM approach for accurate camera pose tracking in dynamic environments. Previous methods detect dynamic components only across a short time-span of consecutive frames. Instead, we provide a more accurate dynamic 3D landmark detection method, followed by the use of long-term consistency via conditional random fields, which leverages long-term observations from multiple frames. Specifically, we first introduce an efficient initial camera pose estimation method based on distinguishing dynamic from static points using graph-cut RANSAC. These static/dynamic labels are used as priors for the unary potential in the conditional random fields, which further improves the accuracy of dynamic 3D landmark detection. Evaluation using the TUM and Bonn RGB-D dynamic datasets shows that our approach significantly outperforms state-of-the-art methods, providing much more accurate camera trajectory estimation in a variety of highly dynamic environments. We also show that dynamic 3D reconstruction can benefit from the camera poses estimated by our RGB-D SLAM approach 
650 4 |a Journal Article 
700 1 |a Huang, Shi-Sheng  |e verfasserin  |4 aut 
700 1 |a Mu, Tai-Jiang  |e verfasserin  |4 aut 
700 1 |a Zhao, Qunhe  |e verfasserin  |4 aut 
700 1 |a Martin, Ralph R  |e verfasserin  |4 aut 
700 1 |a Xu, Kun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 4 vom: 01. Apr., Seite 1745-1757  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:4  |g day:01  |g month:04  |g pages:1745-1757 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3028218  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 4  |b 01  |c 04  |h 1745-1757