|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM315236418 |
003 |
DE-627 |
005 |
20240329235217.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.chemmater.0c02460
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1354.xml
|
035 |
|
|
|a (DE-627)NLM315236418
|
035 |
|
|
|a (NLM)32952297
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hiebl, Caroline
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Rapid Low-Dimensional Li+ Ion Hopping Processes in Synthetic Hectorite-Type Li0.5[Mg2.5Li0.5]Si4O10F2
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 29.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Copyright © 2020 American Chemical Society.
|
520 |
|
|
|a Understanding the origins of fast ion transport in solids is important to develop new ionic conductors for batteries and sensors. Nature offers a rich assortment of rather inspiring structures to elucidate these origins. In particular, layer-structured materials are prone to show facile Li+ transport along their inner surfaces. Here, synthetic hectorite-type Li0.5[Mg2.5Li0.5]Si4O10F2, being a phyllosilicate, served as a model substance to investigate Li+ translational ion dynamics by both broadband conductivity spectroscopy and diffusion-induced 7Li nuclear magnetic resonance (NMR) spin-lattice relaxation experiments. It turned out that conductivity spectroscopy, electric modulus data, and NMR are indeed able to detect a rapid 2D Li+ exchange process governed by an activation energy as low as 0.35 eV. At room temperature, the bulk conductivity turned out to be in the order of 0.1 mS cm-1. Thus, the silicate represents a promising starting point for further improvements by crystal chemical engineering. To the best of our knowledge, such a high Li+ ionic conductivity has not been observed for any silicate yet
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Loch, Patrick
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Brinek, Marina
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gombotz, Maria
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gadermaier, Bernhard
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Heitjans, Paul
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Breu, Josef
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wilkening, H Martin R
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Chemistry of materials : a publication of the American Chemical Society
|d 1998
|g 32(2020), 17 vom: 08. Sept., Seite 7445-7457
|w (DE-627)NLM098194763
|x 0897-4756
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:17
|g day:08
|g month:09
|g pages:7445-7457
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.chemmater.0c02460
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 17
|b 08
|c 09
|h 7445-7457
|