Rapid Low-Dimensional Li+ Ion Hopping Processes in Synthetic Hectorite-Type Li0.5[Mg2.5Li0.5]Si4O10F2

Copyright © 2020 American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 32(2020), 17 vom: 08. Sept., Seite 7445-7457
1. Verfasser: Hiebl, Caroline (VerfasserIn)
Weitere Verfasser: Loch, Patrick, Brinek, Marina, Gombotz, Maria, Gadermaier, Bernhard, Heitjans, Paul, Breu, Josef, Wilkening, H Martin R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM315236418
003 DE-627
005 20240329235217.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.0c02460  |2 doi 
028 5 2 |a pubmed24n1354.xml 
035 |a (DE-627)NLM315236418 
035 |a (NLM)32952297 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hiebl, Caroline  |e verfasserin  |4 aut 
245 1 0 |a Rapid Low-Dimensional Li+ Ion Hopping Processes in Synthetic Hectorite-Type Li0.5[Mg2.5Li0.5]Si4O10F2 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 2020 American Chemical Society. 
520 |a Understanding the origins of fast ion transport in solids is important to develop new ionic conductors for batteries and sensors. Nature offers a rich assortment of rather inspiring structures to elucidate these origins. In particular, layer-structured materials are prone to show facile Li+ transport along their inner surfaces. Here, synthetic hectorite-type Li0.5[Mg2.5Li0.5]Si4O10F2, being a phyllosilicate, served as a model substance to investigate Li+ translational ion dynamics by both broadband conductivity spectroscopy and diffusion-induced 7Li nuclear magnetic resonance (NMR) spin-lattice relaxation experiments. It turned out that conductivity spectroscopy, electric modulus data, and NMR are indeed able to detect a rapid 2D Li+ exchange process governed by an activation energy as low as 0.35 eV. At room temperature, the bulk conductivity turned out to be in the order of 0.1 mS cm-1. Thus, the silicate represents a promising starting point for further improvements by crystal chemical engineering. To the best of our knowledge, such a high Li+ ionic conductivity has not been observed for any silicate yet 
650 4 |a Journal Article 
700 1 |a Loch, Patrick  |e verfasserin  |4 aut 
700 1 |a Brinek, Marina  |e verfasserin  |4 aut 
700 1 |a Gombotz, Maria  |e verfasserin  |4 aut 
700 1 |a Gadermaier, Bernhard  |e verfasserin  |4 aut 
700 1 |a Heitjans, Paul  |e verfasserin  |4 aut 
700 1 |a Breu, Josef  |e verfasserin  |4 aut 
700 1 |a Wilkening, H Martin R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 32(2020), 17 vom: 08. Sept., Seite 7445-7457  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:17  |g day:08  |g month:09  |g pages:7445-7457 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.0c02460  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 17  |b 08  |c 09  |h 7445-7457