Rapid Low-Dimensional Li+ Ion Hopping Processes in Synthetic Hectorite-Type Li0.5[Mg2.5Li0.5]Si4O10F2

Copyright © 2020 American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 32(2020), 17 vom: 08. Sept., Seite 7445-7457
1. Verfasser: Hiebl, Caroline (VerfasserIn)
Weitere Verfasser: Loch, Patrick, Brinek, Marina, Gombotz, Maria, Gadermaier, Bernhard, Heitjans, Paul, Breu, Josef, Wilkening, H Martin R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Copyright © 2020 American Chemical Society.
Understanding the origins of fast ion transport in solids is important to develop new ionic conductors for batteries and sensors. Nature offers a rich assortment of rather inspiring structures to elucidate these origins. In particular, layer-structured materials are prone to show facile Li+ transport along their inner surfaces. Here, synthetic hectorite-type Li0.5[Mg2.5Li0.5]Si4O10F2, being a phyllosilicate, served as a model substance to investigate Li+ translational ion dynamics by both broadband conductivity spectroscopy and diffusion-induced 7Li nuclear magnetic resonance (NMR) spin-lattice relaxation experiments. It turned out that conductivity spectroscopy, electric modulus data, and NMR are indeed able to detect a rapid 2D Li+ exchange process governed by an activation energy as low as 0.35 eV. At room temperature, the bulk conductivity turned out to be in the order of 0.1 mS cm-1. Thus, the silicate represents a promising starting point for further improvements by crystal chemical engineering. To the best of our knowledge, such a high Li+ ionic conductivity has not been observed for any silicate yet
Beschreibung:Date Revised 29.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.0c02460