Towards Robust Monocular Depth Estimation : Mixing Datasets for Zero-Shot Cross-Dataset Transfer

The success of monocular depth estimation relies on large and diverse training sets. Due to the challenges associated with acquiring dense ground-truth depth across different environments at scale, a number of datasets with distinct characteristics and biases have emerged. We develop tools that enab...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 3 vom: 23. März, Seite 1623-1637
1. Verfasser: Ranftl, Rene (VerfasserIn)
Weitere Verfasser: Lasinger, Katrin, Hafner, David, Schindler, Konrad, Koltun, Vladlen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM314264035
003 DE-627
005 20231225152344.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3019967  |2 doi 
028 5 2 |a pubmed24n1047.xml 
035 |a (DE-627)NLM314264035 
035 |a (NLM)32853149 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ranftl, Rene  |e verfasserin  |4 aut 
245 1 0 |a Towards Robust Monocular Depth Estimation  |b Mixing Datasets for Zero-Shot Cross-Dataset Transfer 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The success of monocular depth estimation relies on large and diverse training sets. Due to the challenges associated with acquiring dense ground-truth depth across different environments at scale, a number of datasets with distinct characteristics and biases have emerged. We develop tools that enable mixing multiple datasets during training, even if their annotations are incompatible. In particular, we propose a robust training objective that is invariant to changes in depth range and scale, advocate the use of principled multi-objective learning to combine data from different sources, and highlight the importance of pretraining encoders on auxiliary tasks. Armed with these tools, we experiment with five diverse training datasets, including a new, massive data source: 3D films. To demonstrate the generalization power of our approach we use zero-shot cross-dataset transfer, i.e. we evaluate on datasets that were not seen during training. The experiments confirm that mixing data from complementary sources greatly improves monocular depth estimation. Our approach clearly outperforms competing methods across diverse datasets, setting a new state of the art for monocular depth estimation 
650 4 |a Journal Article 
700 1 |a Lasinger, Katrin  |e verfasserin  |4 aut 
700 1 |a Hafner, David  |e verfasserin  |4 aut 
700 1 |a Schindler, Konrad  |e verfasserin  |4 aut 
700 1 |a Koltun, Vladlen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 3 vom: 23. März, Seite 1623-1637  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:3  |g day:23  |g month:03  |g pages:1623-1637 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3019967  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 3  |b 23  |c 03  |h 1623-1637