Towards Robust Monocular Depth Estimation : Mixing Datasets for Zero-Shot Cross-Dataset Transfer
The success of monocular depth estimation relies on large and diverse training sets. Due to the challenges associated with acquiring dense ground-truth depth across different environments at scale, a number of datasets with distinct characteristics and biases have emerged. We develop tools that enab...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 3 vom: 23. März, Seite 1623-1637
|
1. Verfasser: |
Ranftl, Rene
(VerfasserIn) |
Weitere Verfasser: |
Lasinger, Katrin,
Hafner, David,
Schindler, Konrad,
Koltun, Vladlen |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article |