Assessment of the roles of SPO11-2 and SPO11-4 in meiosis in rice using CRISPR/Cas9 mutagenesis

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 71(2020), 22 vom: 31. Dez., Seite 7046-7058
1. Verfasser: Fayos, Ian (VerfasserIn)
Weitere Verfasser: Meunier, Anne Cécile, Vernet, Aurore, Navarro-Sanz, Sergi, Portefaix, Murielle, Lartaud, Marc, Bastianelli, Giacomo, Périn, Christophe, Nicolas, Alain, Guiderdoni, Emmanuel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't SPO11 CRISPR/Cas9 mutagenesis meiosis recombination rice
Beschreibung
Zusammenfassung:© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
In Arabidopsis, chromosomal double-strand breaks at meiosis are presumably catalyzed by two distinct SPO11 transesterases, AtSPO11-1 and AtSPO11-2, together with M-TOPVIB. To clarify the roles of the SPO11 paralogs in rice, we used CRISPR/Cas9 mutagenesis to produce null biallelic mutants in OsSPO11-1, OsSPO11-2, and OsSPO11-4. Similar to Osspo11-1, biallelic mutations in the first exon of OsSPO11-2 led to complete panicle sterility. Conversely, all Osspo11-4 biallelic mutants were fertile. To generate segregating Osspo11-2 mutant lines, we developed a strategy based on dual intron targeting. Similar to Osspo11-1, the pollen mother cells of Osspo11-2 progeny plants showed an absence of bivalent formation at metaphase I, aberrant segregation of homologous chromosomes, and formation of non-viable tetrads. In contrast, the chromosome behavior in Osspo11-4 male meiocytes was indistinguishable from that in the wild type. While similar numbers of OsDMC1 foci were revealed by immunostaining in wild-type and Osspo11-4 prophase pollen mother cells (114 and 101, respectively), a surprisingly high number (85) of foci was observed in the sterile Osspo11-2 mutant, indicative of a divergent function between OsSPO11-1 and OsSPO11-2. This study demonstrates that whereas OsSPO11-1 and OsSPO11-2 are the likely orthologs of AtSPO11-1 and AtSPO11-2, OsSPO11-4 has no major role in wild-type rice meiosis
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eraa391