Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO3 /Ni-NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 39 vom: 03. Okt., Seite e2003414
1. Verfasser: Li, Xiaopeng (VerfasserIn)
Weitere Verfasser: Wang, Yang, Wang, Jiajun, Da, Yumin, Zhang, Jinfeng, Li, Lanlan, Zhong, Cheng, Deng, Yida, Han, Xiaopeng, Hu, Wenbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article electrocatalysts heterointerfaces hydrogen evolution reaction oxygen evolution reaction transition metal oxides water-splitting
LEADER 01000naa a22002652 4500
001 NLM313891222
003 DE-627
005 20231225151542.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202003414  |2 doi 
028 5 2 |a pubmed24n1046.xml 
035 |a (DE-627)NLM313891222 
035 |a (NLM)32815243 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xiaopeng  |e verfasserin  |4 aut 
245 1 0 |a Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO3 /Ni-NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley-VCH GmbH. 
520 |a Exploring earth-abundant and highly efficient electrocatalysts is critical for further development of water electrolyzer systems. Integrating bifunctional catalytically active sites into one multi-component might greatly improve the overall water-splitting performance. In this work, amorphous NiO nanosheets coupled with ultrafine Ni and MoO3 nanoparticles (MoO3 /Ni-NiO), which contains two heterostructures (i.e., Ni-NiO and MoO3 -NiO), is fabricated via a novel sequential electrodeposition strategy. The as-synthesized MoO3 /Ni-NiO composite exhibits superior electrocatalytic properties, affording low overpotentials of 62 mV at 10 mA cm-2 and 347 mV at 100 mA cm-2 for catalyzing the hydrogen and the oxygen evolution reaction (HER/OER), respectively. Moreover, the MoO3 /Ni-NiO hybrid enables the overall alkaline water-splitting at a low cell voltage of 1.55 V to achieve 10 mA cm-2 with outstanding catalytic durability, significantly outperforming the noble-metal catalysts and many materials previously reported. Experimental and theoretical investigations collectively demonstrate the generated Ni-NiO and MoO3 -NiO heterostructures significantly reduce the energetic barrier and act as catalytically active centers for selective HER and OER, synergistically accelerating the overall water-splitting process. This work helps to fundamentally understand the heterostructure-dependent mechanism, providing guidance for the rational design and oriented construction of hybrid nanomaterials for diverse catalytic processes 
650 4 |a Journal Article 
650 4 |a electrocatalysts 
650 4 |a heterointerfaces 
650 4 |a hydrogen evolution reaction 
650 4 |a oxygen evolution reaction 
650 4 |a transition metal oxides 
650 4 |a water-splitting 
700 1 |a Wang, Yang  |e verfasserin  |4 aut 
700 1 |a Wang, Jiajun  |e verfasserin  |4 aut 
700 1 |a Da, Yumin  |e verfasserin  |4 aut 
700 1 |a Zhang, Jinfeng  |e verfasserin  |4 aut 
700 1 |a Li, Lanlan  |e verfasserin  |4 aut 
700 1 |a Zhong, Cheng  |e verfasserin  |4 aut 
700 1 |a Deng, Yida  |e verfasserin  |4 aut 
700 1 |a Han, Xiaopeng  |e verfasserin  |4 aut 
700 1 |a Hu, Wenbin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 39 vom: 03. Okt., Seite e2003414  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:39  |g day:03  |g month:10  |g pages:e2003414 
856 4 0 |u http://dx.doi.org/10.1002/adma.202003414  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 39  |b 03  |c 10  |h e2003414