|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM313783853 |
003 |
DE-627 |
005 |
20231225151319.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202000769
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1045.xml
|
035 |
|
|
|a (DE-627)NLM313783853
|
035 |
|
|
|a (NLM)32803781
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Jia
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Atomically Thin Hexagonal Boron Nitride and Its Heterostructures
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 10.02.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 Wiley-VCH GmbH.
|
520 |
|
|
|a Atomically thin hexagonal boron nitride (h-BN) is an emerging star of 2D materials. It is taken as an optimal substrate for other 2D-material-based devices owing to its atomical flatness, absence of dangling bonds, and excellent stability. Specifically, h-BN is found to be a natural hyperbolic material in the mid-infrared range, as well as a piezoelectric material. All the unique properties are beneficial for novel applications in optoelectronics and electronics. Currently, most of these applications are merely based on exfoliated h-BN flakes at their proof-of-concept stages. Chemical vapor deposition (CVD) is considered as the most promising approach for producing large-scale, high-quality, atomically thin h-BN films and heterostructures. Herein, CVD synthesis of atomically thin h-BN is the focus. Also, the growth kinetics are systematically investigated to point out general strategies for controllable and scalable preparation of single-crystal h-BN film. Meanwhile, epitaxial growth of 2D materials onto h-BN and at its edge to construct heterostructures is summarized, emphasizing that the specific orientation of constituent parts in heterostructures can introduce novel properties. Finally, recent applications of atomically thin h-BN and its heterostructures in optoelectronics and electronics are summarized
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a chemical vapor deposition
|
650 |
|
4 |
|a electronics
|
650 |
|
4 |
|a heterostructures
|
650 |
|
4 |
|a hexagonal boron nitride
|
650 |
|
4 |
|a optoelectronics
|
700 |
1 |
|
|a Tan, Biying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Feng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Yunxia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Lifeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Duan, Xiaoming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Zhihua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, PingAn
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 6 vom: 15. Feb., Seite e2000769
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:6
|g day:15
|g month:02
|g pages:e2000769
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202000769
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 6
|b 15
|c 02
|h e2000769
|