|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM313617945 |
003 |
DE-627 |
005 |
20231225150948.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.0c00692
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1045.xml
|
035 |
|
|
|a (DE-627)NLM313617945
|
035 |
|
|
|a (NLM)32787057
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a May, Yu Aung
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Highly Efficient CuO/α-MnO2 Catalyst for Low-Temperature CO Oxidation
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Copper manganese composite (hopcalite) catalyst has been widely explored for low-temperature CO oxidation reactions. However, the previous reports on the stabilization of such composite catalysts have shown that they deactivated severely under moist conditions. Herein, we developed an α-MnO2 nanorod-supported copper oxide catalyst that is very active and stable for the conditions with or without moisture by the deposition precipitation (DP) method. Incredibly, the CuO/MnO2 DP catalyst (with 5 wt % copper loading) achieves superior activity with a reaction rate of 9.472 μmol-1·gcat-1·s-1 even at ambient temperatures, which is at least double times of that for the reported copper-based catalyst. Additionally, the CuO/MnO2 DP catalyst is significantly more stable than the copper manganese composite catalysts reported in the literature under the presence of 3% water vapor as well as without moisture. A correlation between the catalytic CO oxidation activity and textural characteristics was derived via multitechnique analyses. The results imply that the superior activity of the CuO/MnO2 DP catalyst is associated with the proper adsorption of CO on partially reduced copper oxide as Cu(I)-CO and more surface oxygen species at the interfacial site of the catalyst
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Wei, Shuai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Wen-Zhu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Wei-Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jia, Chun-Jiang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1999
|g 36(2020), 38 vom: 29. Sept., Seite 11196-11206
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2020
|g number:38
|g day:29
|g month:09
|g pages:11196-11206
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.0c00692
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2020
|e 38
|b 29
|c 09
|h 11196-11206
|