Learning Meta-Distance for Sequences by Learning a Ground Metric via Virtual Sequence Regression

Distance between sequences is structural by nature because it needs to establish the temporal alignments among the temporally correlated vectors in sequences with varying lengths. Generally, distances for sequences heavily depend on the ground metric between the vectors in sequences to infer the ali...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 1 vom: 15. Jan., Seite 286-301
Auteur principal: Su, Bing (Auteur)
Autres auteurs: Wu, Ying
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.