Learning Meta-Distance for Sequences by Learning a Ground Metric via Virtual Sequence Regression

Distance between sequences is structural by nature because it needs to establish the temporal alignments among the temporally correlated vectors in sequences with varying lengths. Generally, distances for sequences heavily depend on the ground metric between the vectors in sequences to infer the ali...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 1 vom: 15. Jan., Seite 286-301
Auteur principal: Su, Bing (Auteur)
Autres auteurs: Wu, Ying
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM31326063X
003 DE-627
005 20250227173840.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3010568  |2 doi 
028 5 2 |a pubmed25n1044.xml 
035 |a (DE-627)NLM31326063X 
035 |a (NLM)32750823 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Bing  |e verfasserin  |4 aut 
245 1 0 |a Learning Meta-Distance for Sequences by Learning a Ground Metric via Virtual Sequence Regression 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.01.2022 
500 |a Date Revised 10.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Distance between sequences is structural by nature because it needs to establish the temporal alignments among the temporally correlated vectors in sequences with varying lengths. Generally, distances for sequences heavily depend on the ground metric between the vectors in sequences to infer the alignments and hence can be viewed as meta-distances upon the ground metric. Learning such meta-distance from multi-dimensional sequences is appealing but challenging. We propose to learn the meta-distance through learning a ground metric for the vectors in sequences. The learning samples are sequences of vectors for which how the ground metric between vectors induces the meta-distance is given. The objective is that the meta-distance induced by the learned ground metric produces large values for sequences from different classes and small values for those from the same class. We formulate the ground metric as a parameter of the meta-distance and regress each sequence to an associated pre-generated virtual sequence w.r.t. the meta-distance, where the virtual sequences for sequences of different classes are well-separated. We develop general iterative solutions to learn both the Mahalanobis metric and the deep metric induced by a neural network for any ground-metric-based sequence distance. Experiments on several sequence datasets demonstrate the effectiveness and efficiency of the proposed methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Wu, Ying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 1 vom: 15. Jan., Seite 286-301  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:1  |g day:15  |g month:01  |g pages:286-301 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3010568  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 1  |b 15  |c 01  |h 286-301