Scalable and Practical Natural Gradient for Large-Scale Deep Learning

Large-scale distributed training of deep neural networks results in models with worse generalization performance as a result of the increase in the effective mini-batch size. Previous approaches attempt to address this problem by varying the learning rate and batch size over epochs and layers, or ad...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 1 vom: 30. Jan., Seite 404-415
Auteur principal: Osawa, Kazuki (Auteur)
Autres auteurs: Tsuji, Yohei, Ueno, Yuichiro, Naruse, Akira, Foo, Chuan-Sheng, Yokota, Rio
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM31326032X
003 DE-627
005 20250227173837.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3004354  |2 doi 
028 5 2 |a pubmed25n1044.xml 
035 |a (DE-627)NLM31326032X 
035 |a (NLM)32750792 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Osawa, Kazuki  |e verfasserin  |4 aut 
245 1 0 |a Scalable and Practical Natural Gradient for Large-Scale Deep Learning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.01.2022 
500 |a Date Revised 06.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Large-scale distributed training of deep neural networks results in models with worse generalization performance as a result of the increase in the effective mini-batch size. Previous approaches attempt to address this problem by varying the learning rate and batch size over epochs and layers, or ad hoc modifications of batch normalization. We propose scalable and practical natural gradient descent (SP-NGD), a principled approach for training models that allows them to attain similar generalization performance to models trained with first-order optimization methods, but with accelerated convergence. Furthermore, SP-NGD scales to large mini-batch sizes with a negligible computational overhead as compared to first-order methods. We evaluated SP-NGD on a benchmark task where highly optimized first-order methods are available as references: training a ResNet-50 model for image classification on ImageNet. We demonstrate convergence to a top-1 validation accuracy of 75.4 percent in 5.5 minutes using a mini-batch size of 32,768 with 1,024 GPUs, as well as an accuracy of 74.9 percent with an extremely large mini-batch size of 131,072 in 873 steps of SP-NGD 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tsuji, Yohei  |e verfasserin  |4 aut 
700 1 |a Ueno, Yuichiro  |e verfasserin  |4 aut 
700 1 |a Naruse, Akira  |e verfasserin  |4 aut 
700 1 |a Foo, Chuan-Sheng  |e verfasserin  |4 aut 
700 1 |a Yokota, Rio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 1 vom: 30. Jan., Seite 404-415  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:1  |g day:30  |g month:01  |g pages:404-415 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3004354  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 1  |b 30  |c 01  |h 404-415