Scalable and Practical Natural Gradient for Large-Scale Deep Learning

Large-scale distributed training of deep neural networks results in models with worse generalization performance as a result of the increase in the effective mini-batch size. Previous approaches attempt to address this problem by varying the learning rate and batch size over epochs and layers, or ad...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 1 vom: 30. Jan., Seite 404-415
1. Verfasser: Osawa, Kazuki (VerfasserIn)
Weitere Verfasser: Tsuji, Yohei, Ueno, Yuichiro, Naruse, Akira, Foo, Chuan-Sheng, Yokota, Rio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Large-scale distributed training of deep neural networks results in models with worse generalization performance as a result of the increase in the effective mini-batch size. Previous approaches attempt to address this problem by varying the learning rate and batch size over epochs and layers, or ad hoc modifications of batch normalization. We propose scalable and practical natural gradient descent (SP-NGD), a principled approach for training models that allows them to attain similar generalization performance to models trained with first-order optimization methods, but with accelerated convergence. Furthermore, SP-NGD scales to large mini-batch sizes with a negligible computational overhead as compared to first-order methods. We evaluated SP-NGD on a benchmark task where highly optimized first-order methods are available as references: training a ResNet-50 model for image classification on ImageNet. We demonstrate convergence to a top-1 validation accuracy of 75.4 percent in 5.5 minutes using a mini-batch size of 32,768 with 1,024 GPUs, as well as an accuracy of 74.9 percent with an extremely large mini-batch size of 131,072 in 873 steps of SP-NGD
Beschreibung:Date Completed 10.01.2022
Date Revised 10.01.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2020.3004354