|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM313215316 |
003 |
DE-627 |
005 |
20231225150110.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TUFFC.2020.3007808
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1044.xml
|
035 |
|
|
|a (DE-627)NLM313215316
|
035 |
|
|
|a (NLM)32746206
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wear, Keith A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Correction for Hydrophone Spatial Averaging Artifacts for Circular Sources
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.07.2021
|
500 |
|
|
|a Date Revised 03.08.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This article reports an investigation of an inverse-filter method to correct for experimental underestimation of pressure due to spatial averaging across a hydrophone sensitive element. The spatial averaging filter (SAF) depends on hydrophone type (membrane, needle, or fiber-optic), hydrophone geometrical sensitive element diameter, transducer driving frequency, and transducer F number (ratio of focal length to diameter). The absolute difference between theoretical and experimental SAFs for 25 transducer/hydrophone pairs was 7% ± 3% (mean ± standard deviation). Empirical formulas based on SAFs are provided to enable researchers to easily correct for hydrophone spatial averaging errors in peak compressional pressure ( pc ), peak rarefactional pressure ( pr ), and pulse intensity integral. The empirical formulas show, for example, that if a 3-MHz, F /2 transducer is driven to moderate nonlinear distortion and measured at the focal point with a 500- [Formula: see text] membrane hydrophone, then spatial averaging errors are approximately 16% ( pc ), 12% ( pr ), and 24% (pulse intensity integral). The formulas are based on circular transducers but also provide plausible upper bounds for spatial averaging errors for transducers with rectangular-transmit apertures, such as linear and phased arrays
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, P.H.S.
|
700 |
1 |
|
|a Shah, Anant
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Baker, Christian
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on ultrasonics, ferroelectrics, and frequency control
|d 1986
|g 67(2020), 12 vom: 21. Dez., Seite 2674-2691
|w (DE-627)NLM098181017
|x 1525-8955
|7 nnns
|
773 |
1 |
8 |
|g volume:67
|g year:2020
|g number:12
|g day:21
|g month:12
|g pages:2674-2691
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TUFFC.2020.3007808
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 67
|j 2020
|e 12
|b 21
|c 12
|h 2674-2691
|