Coupling a Sponge Metal Fibers Skeleton with In Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium-Sulfur Batteries

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 34 vom: 01. Aug., Seite e2003657
1. Verfasser: Liu, Bo (VerfasserIn)
Weitere Verfasser: Zhang, Yan, Wang, Zilin, Ai, Changzhi, Liu, Sufu, Liu, Ping, Zhong, Yu, Lin, Shiwei, Deng, Shengjue, Liu, Qi, Pan, Guoxiang, Wang, Xiuli, Xia, Xinhui, Tu, Jiangping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article flexible lithium-sulfur batteries lithium metal anodes sponge nickel spray quenching sulfur cathodes
LEADER 01000naa a22002652 4500
001 NLM312625499
003 DE-627
005 20231225144823.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202003657  |2 doi 
028 5 2 |a pubmed24n1042.xml 
035 |a (DE-627)NLM312625499 
035 |a (NLM)32686213 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Bo  |e verfasserin  |4 aut 
245 1 0 |a Coupling a Sponge Metal Fibers Skeleton with In Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium-Sulfur Batteries 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Lithium-sulfur batteries (LSBs) are regarded as promising next-generation energy storage systems, however, the uncontrollable dendrite formation and serious polysulfide shuttling severely hinder their commercial success. Herein, a powerful 3D sponge nickel (SN) skeleton plus in situ surface engineering strategy, to address these issues synergistically, is reported, and a high-performance flexible LSB device is constructed. Specifically, the rationally designed spray-quenched lithium metal on the SN matrix (solid electrolyte interface (SEI)Li/SN), as dendrite inhibitor, combines the merits of the 3D lithiophilic SN skeleton and the in situ formed SEI layer derived from the spray-quenching process, and thereby exhibits a steady overpotential within 75 mV for 1500 h at 5 mA cm-2 /10 mA h cm-2 . Meanwhile, in situ surface sulfurization of the SN skeleton hybridizing with the carbon/sulfur composite (SC@Ni3 S2 /SN) serves as efficient lithium polysulfide adsorbent to catalyze the overall reaction kinetics. COMSOL Multiphysics simulations and density functional theory calculations are further conducted to explore the underlying mechanisms. As a proof of concept, the well-designed SEI@Li/SN||SC@Ni3 S2 /SN full cell shows excellent electrochemical performance with a negative/positive ratio in capacity of ≈2 and capacity retention of 99.82% at 1 C under mechanical deformation. The novel design principles of these materials and electrodes successfully shed new light on the development of flexible LSBs 
650 4 |a Journal Article 
650 4 |a flexible lithium-sulfur batteries 
650 4 |a lithium metal anodes 
650 4 |a sponge nickel 
650 4 |a spray quenching 
650 4 |a sulfur cathodes 
700 1 |a Zhang, Yan  |e verfasserin  |4 aut 
700 1 |a Wang, Zilin  |e verfasserin  |4 aut 
700 1 |a Ai, Changzhi  |e verfasserin  |4 aut 
700 1 |a Liu, Sufu  |e verfasserin  |4 aut 
700 1 |a Liu, Ping  |e verfasserin  |4 aut 
700 1 |a Zhong, Yu  |e verfasserin  |4 aut 
700 1 |a Lin, Shiwei  |e verfasserin  |4 aut 
700 1 |a Deng, Shengjue  |e verfasserin  |4 aut 
700 1 |a Liu, Qi  |e verfasserin  |4 aut 
700 1 |a Pan, Guoxiang  |e verfasserin  |4 aut 
700 1 |a Wang, Xiuli  |e verfasserin  |4 aut 
700 1 |a Xia, Xinhui  |e verfasserin  |4 aut 
700 1 |a Tu, Jiangping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 34 vom: 01. Aug., Seite e2003657  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:34  |g day:01  |g month:08  |g pages:e2003657 
856 4 0 |u http://dx.doi.org/10.1002/adma.202003657  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 34  |b 01  |c 08  |h e2003657