Coupling a Sponge Metal Fibers Skeleton with In Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium-Sulfur Batteries

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 34 vom: 01. Aug., Seite e2003657
1. Verfasser: Liu, Bo (VerfasserIn)
Weitere Verfasser: Zhang, Yan, Wang, Zilin, Ai, Changzhi, Liu, Sufu, Liu, Ping, Zhong, Yu, Lin, Shiwei, Deng, Shengjue, Liu, Qi, Pan, Guoxiang, Wang, Xiuli, Xia, Xinhui, Tu, Jiangping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article flexible lithium-sulfur batteries lithium metal anodes sponge nickel spray quenching sulfur cathodes
Beschreibung
Zusammenfassung:© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lithium-sulfur batteries (LSBs) are regarded as promising next-generation energy storage systems, however, the uncontrollable dendrite formation and serious polysulfide shuttling severely hinder their commercial success. Herein, a powerful 3D sponge nickel (SN) skeleton plus in situ surface engineering strategy, to address these issues synergistically, is reported, and a high-performance flexible LSB device is constructed. Specifically, the rationally designed spray-quenched lithium metal on the SN matrix (solid electrolyte interface (SEI)Li/SN), as dendrite inhibitor, combines the merits of the 3D lithiophilic SN skeleton and the in situ formed SEI layer derived from the spray-quenching process, and thereby exhibits a steady overpotential within 75 mV for 1500 h at 5 mA cm-2 /10 mA h cm-2 . Meanwhile, in situ surface sulfurization of the SN skeleton hybridizing with the carbon/sulfur composite (SC@Ni3 S2 /SN) serves as efficient lithium polysulfide adsorbent to catalyze the overall reaction kinetics. COMSOL Multiphysics simulations and density functional theory calculations are further conducted to explore the underlying mechanisms. As a proof of concept, the well-designed SEI@Li/SN||SC@Ni3 S2 /SN full cell shows excellent electrochemical performance with a negative/positive ratio in capacity of ≈2 and capacity retention of 99.82% at 1 C under mechanical deformation. The novel design principles of these materials and electrodes successfully shed new light on the development of flexible LSBs
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202003657