Bioinspired Multifunctional Cellular Plastics with a Negative Poisson's Ratio for High Energy Dissipation

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 33 vom: 15. Aug., Seite e2001222
1. Verfasser: Li, Dewen (VerfasserIn)
Weitere Verfasser: Bu, Xiaochen, Xu, Zongpu, Luo, Yingwu, Bai, Hao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bioinspired materials cellular plastics high energy dissipation multifunctional materials negative Poisson’s ratios
Beschreibung
Zusammenfassung:© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cellular plastics have been widely used in transportation, aerospace, and personal safety applications owing to their excellent mechanical, thermal, and acoustic properties. It is highly desirable to impart them with a complex porous structure and composition distribution to obtain specific functionality for various engineering applications, which is challenging with conventional foaming technologies. Herein, it is demonstrated that this can be achieved through the controlled freezing process of a monomer/water emulsion, followed by cryopolymerization and room temperature thawing. As ice is used as a template, this method is environmentally friendly and capable of producing cellular plastics with various microstructures by harnessing the numerous morphologies of ice crystals. In particular, a cellular plastic with a radially aligned structure shows a negative Poisson's ratio under compression. The rigid plastic shows a much higher energy dissipation capability compared to other materials with similar negative Poisson's ratios. Additionally, the simplicity and scalability of this approach provides new possibilities for fabricating high-performance cellular plastics with well-defined porous structures and composition distributions
Beschreibung:Date Completed 26.08.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202001222