Graphitic carbon nitride (g-C3N4) as an efficient metal-free Fenton-like catalyst for degrading organic pollutants : the overlooked non-photocatalytic activity

Graphitic carbon nitride (g-C3N4) has attracted a large amount of research, mainly being used as a photocatalyst, but its Fenton-like catalytic performance has been overlooked. In this paper, the dark Fenton-like catalytic performance of g-C3N4 was evaluated by degrading rhodamine B over a wide pH r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 81(2020), 3 vom: 08. Feb., Seite 518-528
1. Verfasser: Zhu, G X (VerfasserIn)
Weitere Verfasser: Lu, T L, Han, L, Zhan, Y Z
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Environmental Pollutants Nitriles Nitrogen Compounds graphitic carbon nitride Graphite 7782-42-5 Hydrogen Peroxide BBX060AN9V
Beschreibung
Zusammenfassung:Graphitic carbon nitride (g-C3N4) has attracted a large amount of research, mainly being used as a photocatalyst, but its Fenton-like catalytic performance has been overlooked. In this paper, the dark Fenton-like catalytic performance of g-C3N4 was evaluated by degrading rhodamine B over a wide pH range. The results showed that the g-C3N4, which was synthesized by conventional urea pyrolysis without any modification, was an efficient metal-free heterogeneous Fenton-like catalyst. The highest activity occurred under a weakly alkaline condition of about pH 10. The experiment of catalyst recycling indicated that g-C3N4 had long-term stability. The reactive oxidizing species of HO·, generated by the g-C3N4 activating H2O2, was identified by EPR and further supported by a scavenging experiment of HO· using isopropanol as the scavenger. The HNO3 oxidation of g-C3N4 resulted in catalytic deactivation, implying the catalytic activity originated from the surface reduced groups of g-C3N4. The structure of synthesized g-C3N4 before and after the HNO3 oxidation was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy, and a possible catalytic mechanism was proposed
Beschreibung:Date Completed 12.05.2020
Date Revised 15.12.2020
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2020.129