Tuning the Anode-Electrolyte Interface Chemistry for Garnet-Based Solid-State Li Metal Batteries

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 23 vom: 03. Juni, Seite e2000030
1. Verfasser: Deng, Tao (VerfasserIn)
Weitere Verfasser: Ji, Xiao, Zhao, Yang, Cao, Longsheng, Li, Shuang, Hwang, Sooyeon, Luo, Chao, Wang, Pengfei, Jia, Haiping, Fan, Xiulin, Lu, Xiaochuan, Su, Dong, Sun, Xueliang, Wang, Chunsheng, Zhang, Ji-Guang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article garnet electrolytes interfacial chemistry lithium dendrites solid-electrolyte interphase solid-state batteries
Beschreibung
Zusammenfassung:© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid-state Li metal batteries (SSLBs). Here, it is reported that infusing garnet-type solid electrolytes (GSEs) with the air-stable electrolyte Li3 PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm-2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li-ion conductivity of the grain boundaries, but also form a stable Li-ion conductive but electron-insulating LPO-derived solid-electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain-boundary modification on GSEs represents a promising strategy to revolutionize the anode-electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid-state batteries
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202000030