Experimental Validation of Perfusion Imaging With HOSVD Clutter Filters

Novel pulsed-Doppler methods for perfusion imaging are validated using dialysis cartridges as perfusion phantoms. Techniques that were demonstrated qualitatively at 24 MHz, in vivo, are here examined quantitatively at 5 and 12.5 MHz using phantoms with the blood-mimicking fluid flow within cellulose...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 67(2020), 9 vom: 23. Sept., Seite 1830-1838
1. Verfasser: Zhu, Yang (VerfasserIn)
Weitere Verfasser: Kim, MinWoo, Hoerig, Cameron, Insana, Michael F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, N.I.H., Extramural
Beschreibung
Zusammenfassung:Novel pulsed-Doppler methods for perfusion imaging are validated using dialysis cartridges as perfusion phantoms. Techniques that were demonstrated qualitatively at 24 MHz, in vivo, are here examined quantitatively at 5 and 12.5 MHz using phantoms with the blood-mimicking fluid flow within cellulose microfibers. One goal is to explore a variety of flow states to optimize measurement sensitivity and flow accuracy. The results show that 2-3-s echo acquisitions at roughly 10 frames/s yield the highest sensitivity to flows of 1-4 mL/min. A second goal is to examine methods for setting the parameters of higher order singular value decomposition (HOSVD) clutter filters. For stationary or moving clutter, the velocity of the blood-mimicking fluid in the microfibers is consistently estimated within measurement uncertainty (mean coefficient of variation = 0.26). Power Doppler signals were equivalent for stationary and moving clutter after clutter filtering, increasing approximately 3 dB/mL/min of blood-mimicking fluid flow for 0 ≤ q ≤ 4 mL/min. Comparisons between phantom and preclinical images show that peripheral perfusion imaging can be reliably achieved without contrast enhancement
Beschreibung:Date Completed 22.07.2021
Date Revised 03.09.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2020.2989109