Characterization of the Hydration Process of Phospholipid-Mimetic Polymers Using Air-Injection-Mediated Liquid Exclusion Methods
2-Methacryloyloxyethyl phosphorylcholine (MPC) polymers including hydrophobic units such as poly(MPC-co-butyl methacrylate) (PMB) and poly(MPC-co-dodecyl methacrylate) (PMD) are used as coating agents for medical devices because of their antifouling effects. In this study, the whole hydration proces...
| Publié dans: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 36(2020), 20 vom: 26. Mai, Seite 5626-5632 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , , , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2020
|
| Accès à la collection: | Langmuir : the ACS journal of surfaces and colloids |
| Sujets: | Journal Article Research Support, Non-U.S. Gov't |
| Résumé: | 2-Methacryloyloxyethyl phosphorylcholine (MPC) polymers including hydrophobic units such as poly(MPC-co-butyl methacrylate) (PMB) and poly(MPC-co-dodecyl methacrylate) (PMD) are used as coating agents for medical devices because of their antifouling effects. In this study, the whole hydration process of MPC polymer-coated surfaces was investigated using air-injection-mediated liquid exclusion (AILE) methods in which the liquid exclusion diameter during air injection was correlated to the water-repelling property. The prejetted and standard AILE methods showed the initial change from a dry to a wet state and the swelling behaviors of the MPC polymers, respectively. The liquid exclusion diameter of the MPC polymer-coated surfaces increased with an increase in the immersion time in various aqueous solutions such as deionized water, phosphate-buffered saline (PBS), and cell culture media. Moreover, the liquid exclusion diameter of the PMD-coated surface was larger than that of the PMB-coated one. Ellipsometry directly indicated the polymer layers swollen in water. Scanning probe microscopy (SPM) revealed that nanosized protuberances were formed in water, especially at the PMD-coated surface. The different swelling behaviors of these MPC polymer-coated surfaces affected the liquid exclusion diameters. Thus, the AILE methods are a powerful tool to elucidate the hydration process in various liquid media |
|---|---|
| Description: | Date Completed 26.08.2020 Date Revised 26.08.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1520-5827 |
| DOI: | 10.1021/acs.langmuir.0c00953 |