|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM308353757 |
003 |
DE-627 |
005 |
20231225131545.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202000499
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1027.xml
|
035 |
|
|
|a (DE-627)NLM308353757
|
035 |
|
|
|a (NLM)32249991
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wu, Chao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Flexible Temperature-Invariant Polymer Dielectrics with Large Bandgap
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Flexible dielectrics operable under simultaneous electric and thermal extremes are critical to advanced electronics for ultrahigh densities and/or harsh conditions. However, conventional high-performance polymer dielectrics generally have conjugated aromatic backbones, leading to limited bandgaps and hence high conduction loss and poor energy densities, especially at elevated temperatures. A polyoxafluoronorbornene is reported, which has a key design feature in that it is a polyolefin consisting of repeating units of fairly rigid fused bicyclic structures and alkenes separated by freely rotating single bonds, endowing it with a large bandgap of ≈5 eV and flexibility, while being temperature-invariantly stable over -160 to 160 °C. At 150 °C, the polyoxafluoronorbornene exhibits an electrical conductivity two orders of magnitude lower than the best commercial high-temperature polymers, and features an unprecedented discharged energy density of 5.7 J cm-3 far outperforming the best reported flexible dielectrics. The design strategy uncovered in this work reveals a hitherto unexplored space for the design of scalable and efficient polymer dielectrics for electrical power and electronic systems under concurrent harsh electrical and thermal conditions
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a capacitors
|
650 |
|
4 |
|a elevated temperature
|
650 |
|
4 |
|a energy storage
|
650 |
|
4 |
|a large bandgap
|
650 |
|
4 |
|a polymer dielectrics
|
700 |
1 |
|
|a Deshmukh, Ajinkya A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Zongze
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Lihua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Alamri, Abdullah
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yifei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ramprasad, Rampi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sotzing, Gregory A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Yang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 21 vom: 02. Mai, Seite e2000499
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:21
|g day:02
|g month:05
|g pages:e2000499
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202000499
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 21
|b 02
|c 05
|h e2000499
|