SIF : Self-Inspirited Feature Learning for Person Re-identification

The re-identification (ReID) task has received increasing studies in recent years and its performance has gained significant improvement. The progress mainly comes from searching for new network structures to learn person representations. Most of these networks are trained using the classic stochast...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 04. März
Auteur principal: Wei, Long (Auteur)
Autres auteurs: Wei, Zhenyong, Jin, Zhongming, Yu, Zhengxu, Huang, Jianqiang, Cai, Deng, He, Xiaofei, Hua, Xian-Sheng
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:The re-identification (ReID) task has received increasing studies in recent years and its performance has gained significant improvement. The progress mainly comes from searching for new network structures to learn person representations. Most of these networks are trained using the classic stochastic gradient descent optimizer. However, limited efforts have been made to explore potential performance of existing ReID networks directly by better training scheme, which leaves a large space for ReID research. In this paper, we propose a Self-Inspirited Feature Learning (SIF) method to enhance performance of given ReID networks from the viewpoint of optimization. We design a simple adversarial learning scheme to encourage a network to learn more discriminative person representation. In our method, an auxiliary branch is added into the network only in the training stage, while the structure of the original network stays unchanged during the testing stage. In summary, SIF has three aspects of advantages: (1) it is designed under general setting; (2) it is compatible with many existing feature learning networks on the ReID task; (3) it is easy to implement and has steady performance. We evaluate the performance of SIF on three public ReID datasets: Market1501, DuckMTMC-reID, and CUHK03(both labeled and detected). The results demonstrate significant improvement in performance brought by SIF. We also apply SIF to obtain state-of-the-art results on all the three datasets. Specifically, mAP / Rank-1 accuracy are: 87.6% / 95.2% (without re-rank) on Market1501, 79.4% / 89.8% on DuckMTMC-reID, 77.0% / 79.5% on CUHK03 (labeled) and 73.9% / 76.6% on CUHK03 (detected), respectively. The code of SIF will be available soon
Description:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0042
DOI:10.1109/TIP.2020.2975712