SIF : Self-Inspirited Feature Learning for Person Re-identification

The re-identification (ReID) task has received increasing studies in recent years and its performance has gained significant improvement. The progress mainly comes from searching for new network structures to learn person representations. Most of these networks are trained using the classic stochast...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 04. März
1. Verfasser: Wei, Long (VerfasserIn)
Weitere Verfasser: Wei, Zhenyong, Jin, Zhongming, Yu, Zhengxu, Huang, Jianqiang, Cai, Deng, He, Xiaofei, Hua, Xian-Sheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM307380025
003 DE-627
005 20240229162636.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2975712  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM307380025 
035 |a (NLM)32149635 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Long  |e verfasserin  |4 aut 
245 1 0 |a SIF  |b Self-Inspirited Feature Learning for Person Re-identification 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The re-identification (ReID) task has received increasing studies in recent years and its performance has gained significant improvement. The progress mainly comes from searching for new network structures to learn person representations. Most of these networks are trained using the classic stochastic gradient descent optimizer. However, limited efforts have been made to explore potential performance of existing ReID networks directly by better training scheme, which leaves a large space for ReID research. In this paper, we propose a Self-Inspirited Feature Learning (SIF) method to enhance performance of given ReID networks from the viewpoint of optimization. We design a simple adversarial learning scheme to encourage a network to learn more discriminative person representation. In our method, an auxiliary branch is added into the network only in the training stage, while the structure of the original network stays unchanged during the testing stage. In summary, SIF has three aspects of advantages: (1) it is designed under general setting; (2) it is compatible with many existing feature learning networks on the ReID task; (3) it is easy to implement and has steady performance. We evaluate the performance of SIF on three public ReID datasets: Market1501, DuckMTMC-reID, and CUHK03(both labeled and detected). The results demonstrate significant improvement in performance brought by SIF. We also apply SIF to obtain state-of-the-art results on all the three datasets. Specifically, mAP / Rank-1 accuracy are: 87.6% / 95.2% (without re-rank) on Market1501, 79.4% / 89.8% on DuckMTMC-reID, 77.0% / 79.5% on CUHK03 (labeled) and 73.9% / 76.6% on CUHK03 (detected), respectively. The code of SIF will be available soon 
650 4 |a Journal Article 
700 1 |a Wei, Zhenyong  |e verfasserin  |4 aut 
700 1 |a Jin, Zhongming  |e verfasserin  |4 aut 
700 1 |a Yu, Zhengxu  |e verfasserin  |4 aut 
700 1 |a Huang, Jianqiang  |e verfasserin  |4 aut 
700 1 |a Cai, Deng  |e verfasserin  |4 aut 
700 1 |a He, Xiaofei  |e verfasserin  |4 aut 
700 1 |a Hua, Xian-Sheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 04. März  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:04  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2975712  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 04  |c 03