|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM306427311 |
003 |
DE-627 |
005 |
20231225123337.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201905603
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1021.xml
|
035 |
|
|
|a (DE-627)NLM306427311
|
035 |
|
|
|a (NLM)32048366
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yan, Han
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Electric-Field-Controlled Antiferromagnetic Spintronic Devices
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach for achieving ultralow power spintronic devices via suppressing Joule heating. Here, cutting-edge research, including electric-field modulation of antiferromagnetic spintronic devices using strain, ionic liquids, dielectric materials, and electrochemical ionic migration, is comprehensively reviewed. Various emergent topics such as the Néel spin-orbit torque, chiral spintronics, topological antiferromagnetic spintronics, anisotropic magnetoresistance, memory devices, 2D magnetism, and magneto-ionic modulation with respect to antiferromagnets are examined. In conclusion, the possibility of realizing high-quality room-temperature antiferromagnetic tunnel junctions, antiferromagnetic spin logic devices, and artificial antiferromagnetic neurons is highlighted. It is expected that this work provides an appropriate and forward-looking perspective that will promote the rapid development of this field
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a antiferromagnetic spintronics
|
650 |
|
4 |
|a artificial neurons
|
650 |
|
4 |
|a electrostatic modulation
|
650 |
|
4 |
|a ionic modulation
|
650 |
|
4 |
|a piezoelectric strain
|
700 |
1 |
|
|a Feng, Zexin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qin, Peixin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Xiaorong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Huixin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xiaoning
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Hongyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Haojiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Chengbao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Zhiqi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 12 vom: 15. März, Seite e1905603
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:12
|g day:15
|g month:03
|g pages:e1905603
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201905603
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 12
|b 15
|c 03
|h e1905603
|