Local Prediction Models for Spatiotemporal Volume Visualization

We present a machine learning-based approach for detecting and visualizing complex behavior in spatiotemporal volumes. For this, we train models to predict future data values at a given position based on the past values in its neighborhood, capturing common temporal behavior in the data. We then eva...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 7 vom: 25. Juli, Seite 3091-3108
1. Verfasser: Tkachev, Gleb (VerfasserIn)
Weitere Verfasser: Frey, Steffen, Ertl, Thomas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present a machine learning-based approach for detecting and visualizing complex behavior in spatiotemporal volumes. For this, we train models to predict future data values at a given position based on the past values in its neighborhood, capturing common temporal behavior in the data. We then evaluate the model's prediction on the same data. High prediction error means that the local behavior was too complex, unique or uncertain to be accurately captured during training, indicating spatiotemporal regions with interesting behavior. By training several models of varying capacity, we are able to detect spatiotemporal regions of various complexities. We aggregate the obtained prediction errors into a time series or spatial volumes and visualize them together to highlight regions of unpredictable behavior and how they differ between the models. We demonstrate two further volumetric applications: adaptive timestep selection and analysis of ensemble dissimilarity. We apply our technique to datasets from multiple application domains and demonstrate that we are able to produce meaningful results while making minimal assumptions about the underlying data
Beschreibung:Date Revised 28.05.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2019.2961893