Local Prediction Models for Spatiotemporal Volume Visualization

We present a machine learning-based approach for detecting and visualizing complex behavior in spatiotemporal volumes. For this, we train models to predict future data values at a given position based on the past values in its neighborhood, capturing common temporal behavior in the data. We then eva...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 7 vom: 25. Juli, Seite 3091-3108
1. Verfasser: Tkachev, Gleb (VerfasserIn)
Weitere Verfasser: Frey, Steffen, Ertl, Thomas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article