Estimating Feature-Label Dependence Using Gini Distance Statistics

Identifying statistical dependence between the features and the label is a fundamental problem in supervised learning. This paper presents a framework for estimating dependence between numerical features and a categorical label using generalized Gini distance, an energy distance in reproducing kerne...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 6 vom: 01. Juni, Seite 1947-1963
1. Verfasser: Zhang, Silu (VerfasserIn)
Weitere Verfasser: Dang, Xin, Nguyen, Dao, Wilkins, Dawn, Chen, Yixin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM304700363
003 DE-627
005 20231225115539.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2960358  |2 doi 
028 5 2 |a pubmed24n1015.xml 
035 |a (DE-627)NLM304700363 
035 |a (NLM)31869782 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Silu  |e verfasserin  |4 aut 
245 1 0 |a Estimating Feature-Label Dependence Using Gini Distance Statistics 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Identifying statistical dependence between the features and the label is a fundamental problem in supervised learning. This paper presents a framework for estimating dependence between numerical features and a categorical label using generalized Gini distance, an energy distance in reproducing kernel Hilbert spaces (RKHS). Two Gini distance based dependence measures are explored: Gini distance covariance and Gini distance correlation. Unlike Pearson covariance and correlation, which do not characterize independence, the above Gini distance based measures define dependence as well as independence of random variables. The test statistics are simple to calculate and do not require probability density estimation. Uniform convergence bounds and asymptotic bounds are derived for the test statistics. Comparisons with distance covariance statistics are provided. It is shown that Gini distance statistics converge faster than distance covariance statistics in the uniform convergence bounds, hence tighter upper bounds on both Type I and Type II errors. Moreover, the probability of Gini distance covariance statistic under-performing the distance covariance statistic in Type II error decreases to 0 exponentially with the increase of the sample size. Extensive experimental results are presented to demonstrate the performance of the proposed method 
650 4 |a Journal Article 
700 1 |a Dang, Xin  |e verfasserin  |4 aut 
700 1 |a Nguyen, Dao  |e verfasserin  |4 aut 
700 1 |a Wilkins, Dawn  |e verfasserin  |4 aut 
700 1 |a Chen, Yixin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 6 vom: 01. Juni, Seite 1947-1963  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:6  |g day:01  |g month:06  |g pages:1947-1963 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2960358  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 6  |b 01  |c 06  |h 1947-1963