The coupling reaction of Fe2+ bio-oxidation and resulting Fe3+ hydrolysis drastically improve the formation of iron hydroxysulfate minerals in AMD
The oxidation of Fe2+ by Acidithiobacillus ferrooxidans (A. ferrooxidans) in acid mine drainage (AMD) is often accompanied by formation of iron hydroxysulfate minerals, such as schwertmannite and jarosite. This study reported that 80 mmol L-1 of Fe2+ could be completely oxidized by A. ferrooxidans L...
Veröffentlicht in: | Environmental technology. - 1993. - 42(2021), 15 vom: 01. Juni, Seite 2325-2334 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Acidithiobacillus ferrooxidans acid mine drainage coupling iron hydroxysulfate minerals thermodynamics Ferric Compounds Minerals Iron E1UOL152H7 |
Zusammenfassung: | The oxidation of Fe2+ by Acidithiobacillus ferrooxidans (A. ferrooxidans) in acid mine drainage (AMD) is often accompanied by formation of iron hydroxysulfate minerals, such as schwertmannite and jarosite. This study reported that 80 mmol L-1 of Fe2+ could be completely oxidized by A. ferrooxidans LX5 within 48 h, but only 27.7% of the resultant Fe3+ precipitated to form schwertmannite. However, the conversion efficiency to jarosite was much higher (54.5%). The formation of jarosite lasted 120 h, while only 24 h when conversed to schwertmannite. By constructing a cyclic process of 'Cu-reducing coupled with bio-oxidization', the total Fe in AMD could be fully converted into mineral precipitates. The resultant mineral specie could be regulated simply by control the K+ concentration. Thermodynamically, Fe3+ cannot hydrolyze spontaneously to form schwertmannite due to the positive Gibbs free energy (ΔrGm∘ = 6.63 kJ mol-1) of the reaction. However, if Fe2+ were biologically oxidized by A. ferrooxidans, the resultant Fe3+ could spontaneously form schwertmannite because the aforementioned coupling reaction has a negative Gibbs free energy (ΔrGm∘ = -34.12 kJ mol-1). Even though Fe3+ itself could hydrolyze to form jarosite spontaneously with ΔrGm∘ = -22.20 kJ mol-1, the coupling reaction of Fe2+ bio-oxidation followed by Fe3+ hydrolysis in the presence of K+ could easily promote the formation of jarosite, which exhibited a great negative Gibbs energy (ΔrGm∘ = -67.45 kJ mol-1) |
---|---|
Beschreibung: | Date Completed 09.06.2021 Date Revised 09.06.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2019.1701564 |