LEADER 01000caa a22002652 4500
001 NLM303533021
003 DE-627
005 20240922233456.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26105  |2 doi 
028 5 2 |a pubmed24n1543.xml 
035 |a (DE-627)NLM303533021 
035 |a (NLM)31750558 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khelashvili, George  |e verfasserin  |4 aut 
245 1 0 |a Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.04.2021 
500 |a Date Revised 22.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 Wiley Periodicals, Inc. 
520 |a Recent discoveries about functional mechanisms of proteins in the TMEM16 family of phospholipid scramblases have illuminated the dual role of the membrane as both the substrate and a mechanistically responsive environment in the wide range of physiological processes and genetic disorders in which they are implicated. This is highlighted in the review of recent findings from our collaborative investigations of molecular mechanisms of TMEM16 scramblases that emerged from iterative functional, structural, and computational experimentation. In the context of this review, we present new MD simulations and trajectory analyses motivated by the fact that new structural information about the TMEM16 scramblases is emerging from cryo-EM determinations in lipid nanodiscs. Because the functional environment of these proteins in in vivo and in in vitro is closer to flat membranes, we studied comparatively the responses of the membrane to the TMEM16 proteins in flat membranes and nanodiscs. We find that bilayer shapes in the nanodiscs are very different from those observed in the flat membrane systems, but the function-related slanting of the membrane observed at the nhTMEM16 boundary with the protein is similar in the nanodiscs and in the flat bilayers. This changes, however, in the bilayer composed of longer-tail lipids, which is thicker near the phospholipid translocation pathway, which may reflect an enhanced tendency of the long tails to penetrate the pathway and create, as shown previously, a nonconductive environment. These findings support the correspondence between the mechanistic involvement of the lipid environment in the flat membranes, and the nanodiscs. © 2019 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a CTMD method 
650 4 |a cryo-EM structure determination 
650 4 |a functional mechanisms of TMEM16 scramblases 
650 4 |a lipid nanodiscs 
650 4 |a lipid-dependent gating of TMEM16 scramblases 
650 4 |a membrane remodeling 
650 4 |a molecular dynamics (MD) simulation 
650 4 |a phospholipid scramblases 
650 4 |a protein-membrane interactions 
650 4 |a time-structure Independent Component Analysis (tICA) 
650 7 |a Anoctamins  |2 NLM 
650 7 |a Membrane Lipids  |2 NLM 
650 7 |a Phospholipid Transfer Proteins  |2 NLM 
700 1 |a Cheng, Xiaolu  |e verfasserin  |4 aut 
700 1 |a Falzone, Maria E  |e verfasserin  |4 aut 
700 1 |a Doktorova, Milka  |e verfasserin  |4 aut 
700 1 |a Accardi, Alessio  |e verfasserin  |4 aut 
700 1 |a Weinstein, Harel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 41(2020), 6 vom: 05. März, Seite 538-551  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:41  |g year:2020  |g number:6  |g day:05  |g month:03  |g pages:538-551 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26105  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2020  |e 6  |b 05  |c 03  |h 538-551