InLoc : Indoor Visual Localization with Dense Matching and View Synthesis

We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor spaces. The method proceeds along three steps: (i) eff...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 4 vom: 01. Apr., Seite 1293-1307
1. Verfasser: Taira, Hajime (VerfasserIn)
Weitere Verfasser: Okutomi, Masatoshi, Sattler, Torsten, Cimpoi, Mircea, Pollefeys, Marc, Sivic, Josef, Pajdla, Tomas, Torii, Akihiko
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM303259256
003 DE-627
005 20231225112440.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2952114  |2 doi 
028 5 2 |a pubmed24n1010.xml 
035 |a (DE-627)NLM303259256 
035 |a (NLM)31722474 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Taira, Hajime  |e verfasserin  |4 aut 
245 1 0 |a InLoc  |b Indoor Visual Localization with Dense Matching and View Synthesis 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.03.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor spaces. The method proceeds along three steps: (i) efficient retrieval of candidate poses that scales to large-scale environments, (ii) pose estimation using dense matching rather than sparse local features to deal with weakly textured indoor scenes, and (iii) pose verification by virtual view synthesis that is robust to significant changes in viewpoint, scene layout, and occlusion. Second, we release a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data. Code and data are publicly available 
650 4 |a Journal Article 
700 1 |a Okutomi, Masatoshi  |e verfasserin  |4 aut 
700 1 |a Sattler, Torsten  |e verfasserin  |4 aut 
700 1 |a Cimpoi, Mircea  |e verfasserin  |4 aut 
700 1 |a Pollefeys, Marc  |e verfasserin  |4 aut 
700 1 |a Sivic, Josef  |e verfasserin  |4 aut 
700 1 |a Pajdla, Tomas  |e verfasserin  |4 aut 
700 1 |a Torii, Akihiko  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 4 vom: 01. Apr., Seite 1293-1307  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:4  |g day:01  |g month:04  |g pages:1293-1307 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2952114  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 4  |b 01  |c 04  |h 1293-1307