|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM303259256 |
003 |
DE-627 |
005 |
20231225112440.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2019.2952114
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1010.xml
|
035 |
|
|
|a (DE-627)NLM303259256
|
035 |
|
|
|a (NLM)31722474
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Taira, Hajime
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a InLoc
|b Indoor Visual Localization with Dense Matching and View Synthesis
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 05.03.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor spaces. The method proceeds along three steps: (i) efficient retrieval of candidate poses that scales to large-scale environments, (ii) pose estimation using dense matching rather than sparse local features to deal with weakly textured indoor scenes, and (iii) pose verification by virtual view synthesis that is robust to significant changes in viewpoint, scene layout, and occlusion. Second, we release a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data. Code and data are publicly available
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Okutomi, Masatoshi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sattler, Torsten
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cimpoi, Mircea
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pollefeys, Marc
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sivic, Josef
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pajdla, Tomas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Torii, Akihiko
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 43(2021), 4 vom: 01. Apr., Seite 1293-1307
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:43
|g year:2021
|g number:4
|g day:01
|g month:04
|g pages:1293-1307
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2019.2952114
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 43
|j 2021
|e 4
|b 01
|c 04
|h 1293-1307
|